Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Adaptation of sweet cherry and apple phenology to temperature variability in Moroccan orchards using forcing tests and chill models

DOI
https://doi.org/10.14719/pst.12994
Submitted
28 November 2025
Published
29-01-2026
Versions

Abstract

Rising temperatures in the Mediterranean region threaten fruit trees with high chill requirements, such as sweet cherry and apple by reducing winter chill accumulation, altering phenology and increasing production irregularity. Quantifying cultivar chill/heat requirements is therefore essential to identify cultivars adapted to a particular climate. To assess cultivar adaptation potential by determining the endodormancy release dates and their specific agroclimatic requirements, forcing tests were conducted over three consecutive seasons (2020–2023) on ten sweet cherry and two apple cultivars grown at two major fruit-producing regions in Morocco (Azrou and Imouzzer-Kandar). In addition, the impact of temperature variations on flowering and fruit set rates was evaluated. The results revealed major differences in the dynamic endodormancy release and chill/heat requirements among the studied species/cultivars, these requirements ranged between 662–929 Chill Hours (CH), 432–954 Chill Units (CU), 26.7–56.5 Chill Portions (CP) and 8180–10048 Growing Degree Hours (GDH) for sweet cherry and between 986–1025 CH, 1025–1052 CU, 59.3–61.4 CP and 6982–8617 GDH for apple. Based on these responses, sweet cherry cultivars were classified into three groups: i) low-chill cultivars with variable flowering and reproductive performances, ii) high-chill cultivars with late-flowering  and high fruit set and iii) cultivars with balanced chill requirements and moderate flowering performances. In apple, Gala outperformed Top Red in reproductive efficiency. Finally, colder site such Azrou promoted flowering but reduced fruit set, whereas milder Imouzzer-Kandar enhanced vegetative growth and fruit set. Our results provided practical decision support for cultivar selection and site-specific orchard planning under ongoing climate warming.

References

  1. 1. Luedeling E, Kunz A, Blanke MM. Identification of chilling and heat requirements of cherry trees-a statistical approach. Int J Biometeorol. 2013;57(5):679-89. https://doi.org/10.1007/s00484-012-0594-y
  2. 2. Götz KP, Naher J, Fettke J, Chmielewski FM. Changes of proteins during dormancy and bud development of sweet cherry (Prunus avium L.). Sci Hortic. 2018;239:41-9. https://doi.org/10.1016/j.scienta.2018.05.016
  3. 3. Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant Cell Environ. 2012;35(10):1707-28. https://doi.org/10.1111/j.1365-3040.2012.02552.x
  4. 4. Castède S, Campoy JA, García JQ, Le Dantec L, Lafargue M, Barreneche T, et al. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: Flowering date dissected into chilling and heat requirements. New Phytol. 2014;202(2):703-15. https://doi.org/10.1111/nph.12658
  5. 5. Viti R andreini L, Ruiz D, Egea J, Bartolini S, Iacona C, et al. Effect of climatic conditions on the overcoming of dormancy in apricot flower buds in two Mediterranean areas: Murcia (Spain) and Tuscany (Italy). Sci Hortic. 2010;124(2):217-24. https://doi.org/10.1016/j.scienta.2010.01.001
  6. 6. Salama AM, Ezzat A, El-Ramady H, Alam-Eldein SM, Okba S, Elmenofy HM, et al. Temperate fruit trees under climate change: Challenges for dormancy and chilling requirements in warm winter regions. Horticulturae. 2021;7:86. https://doi.org/10.3390/horticulturae7040086
  7. 7. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(6918):57-60. https://doi.org/10.1038/nature01333
  8. 8. Jochner S, Sparks TH, Laube J, Menzel A. Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol. 2016;60(10):1551-61. https://doi.org/10.1007/s00484-016-1146-7
  9. 9. Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Sang DL, Higuchi H. Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot. 2007;94(9):1470-8. https://doi.org/10.3732/ajb.94.9.1470
  10. 10. Atkinson CJ, Brennan RM, Jones HG. Declining chilling and its impact on temperate perennial crops. Environ Exp Bot. 2013;91:48-62. https://doi.org/10.1016/j.envexpbot.2013.02.004
  11. 11. Fadón E, Rodrigo J. Unveiling winter dormancy through empirical experiments. Environ Exp Bot. 2018;152:28-36. https://doi.org/10.1016/j.envexpbot.2017.11.006
  12. 12. El Baji M, Hanine H, En-Nahli S, Socias I Company R, Kodad O. Morphological and Pomological Characteristics of Sweet Cherry (Prunus avium L.) Grown In-situ under South Mediterranean Climate in Morocco. Int J Fruit Sci. 2021;21(1):52-65. https://doi.org/10.1080/15538362.2020.1858468
  13. 13. El Yaacoubi A, Malagi G, Oukabli A, Hafidi M, Legave JM. Global warming impact on floral phenology of fruit trees species in Mediterranean region. Sci Hortic. 2014;180:243-53. https://doi.org/10.1016/j.scienta.2014.10.041
  14. 14. El Yaacoubi A, Malagi G, Oukabli A, Citadin I, Hafidi M, Bonhomme M, et al. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees. Int J Biometeorol. 2016;60(11):1695-710. https://doi.org/10.1007/s00484-016-1160-9
  15. 15. Cook NC, Calitz FJ, Allderman LA, Steyn WJ, Louw ED. Diverse patterns in dormancy progression of apple buds under variable winter conditions. Sci Hortic. 2017;226:307-15. https://doi.org/10.1016/j.scienta.2017.08.028
  16. 16. Oukabli A, Bartolini S, Viti R. Anatomical and morphological study of apple (Malus x domestica Borkh.) flower buds growing under inadequate winter chilling. J Hortic Sci Biotechnol. 2003;78(4):580-5. https://doi.org/10.1080/14620316.2003.11511667
  17. 17. Driouech F, Stafi H, Khouakhi A, Moutia S, Badi W, ElRhaz K, et al. Recent observed country-wide climate trends in Morocco. Int J Climatol. 2021;41(Suppl 1):E855-74. https://doi.org/10.1002/joc.6734
  18. 18. Fernandez E, Mojahid H, Fadón E, Rodrigo J, Ruiz D, Egea JA, et al. Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Reg Environ Change. 2023;23(1). https://doi.org/10.1007/s10113-022-02006-x
  19. 19. Oukabli A. Le cerisier, une culture de zones d'altitude. Transfert technol Agric. 2004;116:1-4.
  20. 20. Kodad O, En-Nahli S, Hanine H, El Baji M. Année exceptionnelle dans le Moyen Atlas: Effets des aléas climatiques sur la floraison et sur la qualité du fruit du cerisier. Agric Maghreb. 2016;97:62-3.
  21. 21. Meier U. Growth stages of mono-and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry. 2001.
  22. 22. Baggiolini M. Stades repères du pêcher. Rev Rom Agric Vit Arbor. 1952;4:29-35.
  23. 23. Weinberger JH. Chilling requirements of peach varieties. Proc Am Soc Hortic Sci. 1950;56:122-8.
  24. 24. Richardson E, SD S, DR W. A Model for Estimating the Completion of Rest for 'Redhaven' and 'Elberta' Peach Trees. 1974;9(4):331. https://doi.org/10.21273/HORTSCI.9.4.331
  25. 25. Erez A, Couvillon GA. Characterization of the Influence of Moderate Temperatures on Rest Completion in Peach. J Am Soc Hortic Sci. 1987;112(4):677-80. https://doi.org/10.21273/JASHS.112.4.677
  26. 26. Lang GA. Dormancy: A New Universal Terminology. HortScience. 1987;22(5):817-20. https://doi.org/10.21273/HORTSCI.22.5.817
  27. 27. Campoy JA, Ruiz D, Egea J. Dormancy in temperate fruit trees in a global warming context: A review. Sci Hortic. 2011;130:357-72. https://doi.org/10.1016/j.scienta.2011.07.011
  28. 28. El Yaacoubi A, El Jaouhari N, Bourioug M, El Youssfi L, Cherroud S, Bouabid R, et al. Potential vulnerability of Moroccan apple orchard to climate change-induced phenological perturbations: effects on yields and fruit quality. Int J Biometeorol. 2020;64(3):377-87. https://doi.org/10.1007/s00484-019-01821-y
  29. 29. El Yaacoubi A, Oukabli A, Hafidi M, Farrera I, Ainane T, Cherkaoui SI, et al. Validated model for apple flowering prediction in the Mediterranean area in response to temperature variation. Sci Hortic. 2019;249:59-64. https://doi.org/10.1016/j.scienta.2019.01.036
  30. 30. Fadón E, Rodrigo J, Luedeling E. Cultivar-specific responses of sweet cherry flowering to rising temperatures during dormancy. Agric For Meteorol. 2021;307:108486. https://doi.org/10.1016/j.agrformet.2021.108486
  31. 31. Faust M, Erez A, Rowland LJ, Wang SY, Norman HA. Bud Dormancy in Perennial Fruit Trees: Physiological Basis for Dormancy Induction, Maintenance and Release. HortScience. 1997;32:623-9.
  32. https://doi.org/10.21273/HORTSCI.32.4.623
  33. 32. Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, et al. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol. 2010;30(1):89-102. https://doi.org/10.1093/treephys/tpp103
  34. 33. Erami M, Kodad O, Boukhriss HE, Hajjioui H, Outghouliast H, Charafi J, et al. Estimation of chill and heat requirements of Peach and nectarine cultivars under mild Climatic conditions in Morocco. Int J Biometeorol. 2025. https://doi.org/10.1007/s00484-025-03048-6
  35. 34. Hamdani A, El Yaacoubi A, Bouda S, Erami M, Adiba A, Outghouliast H, et al. Chill and heat requirements of four plum varieties growing at two contrasting climate environments in Morocco. EuroMediterr J Environ Integr. 2024. https://doi.org/10.1007/s41207-024-00652-7
  36. 35. Malagi G, Sachet MR, Citadin I, Herter FG, Bonhomme M, Regnard JL, et al. The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees. 2015;29(5):1365-80. https://doi.org/10.1007/s00468-015-1214-3
  37. 36. D'Angeli S, Malhó R, Altamura MM. Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Sci. 2003;165(6):1303-13. https://doi.org/10.1016/S0168-9452(03)00342-X
  38. 37. Erami M, Mamouni A, Oukabli A, El Yaacoubi A. Evaluation of dormancy dynamic and chilling requirements of Moroccan and forgeign apricot (Prunus armeniaca L.) cultivars. Plant Cell Biotechnol Mol Biol. 2021;22(72):404-18.
  39. 38. Schuster M. Self-incompatibility (S) genotypes of cultivated sweet cherries - An overview update 2020. J Kulturpfl. 2020;10:371-81.
  40. 39. Imperiale V, Cutuli M, Marchese A, Trippa DA, Caruso T, Marra FP. Estimation of chilling and heat requirements of six sweet cherry (Prunus avium L.) cultivars. Acta Hortic. 2022;1342:115-22. https://doi.org/10.17660/ActaHortic.2022.1342.16
  41. 40. Melke A. The Physiology of Chilling Temperature Requirements for Dormancy Release and Bud-break in Temperate Fruit Trees Grown at Mild Winter Tropical Climate. J Plant Stud. 2015;4(2). https://doi.org/10.5539/jps.v4n2p110
  42. 41. Keller M, Scheele-Baldinger R, Ferguson JC, Tarara JM, Mills LJ. Inflorescence temperature influences fruit set, phenology and sink strength of Cabernet Sauvignon grape berries. Front Plant Sci. 2022;13:864892. https://doi.org/10.3389/fpls.2022.864892
  43. 42. Samnegård U, Hambäck PA, Smith HG. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R Soc Open Sci. 2019;6(12). https://doi.org/10.1098/rsos.190326
  44. 43. Luedeling E, Guo L, Dai J, Leslie C, Blanke MM. Differential responses of trees to temperature variation during the chilling and forcing phases. Agric For Meteorol. 2013;181:33-42. https://doi.org/10.1016/j.agrformet.2013.06.018
  45. 44. Chmielewski FM, Götz KP, Weber KC, Moryson S. Climate change and spring frost damages for sweet cherries in Germany. Int J Biometeorol. 2018;62(2):217-28. https://doi.org/10.1007/s00484-017-1443-9
  46. 45. Matzneller P, Götz KP, Chmielewski FM. Spring frost vulnerability of sweet cherries under controlled conditions. Int J Biometeorol. 2016;60(1):123-30. https://doi.org/10.1007/s00484-015-1010-1
  47. 46. Legave JM, Blanke M, Christen D, Giovannini D, Mathieu V, Oger R. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int J Biometeorol. 2013;57(2):317-31. https://doi.org/10.1007/s00484-012-0551-9
  48. 47. Darbyshire R, Webb L, Goodwin I, Barlow EWR. Impact of future warming on winter chilling in Australia. Int J Biometeorol. 2013;57(3):355-66. https://doi.org/10.1007/s00484-012-0558-2
  49. 48. Hedhly A, Hormaza JI, Herrero M. Warm temperatures at bloom reduce fruit set in sweet cherry. J Appl Bot Food Qual. 2007
  50. 49. Belhassine F, Pallas B, Pierru-Bluy S, Martinez S, Fumey D, Costes E. A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees. Tree Physiol. 2022;42(11):2306-18. https://doi.org/10.1093/treephys/tpac073
  51. 50. Koutinas N, Pepelyankov G, Lichev V. Flower induction and flower bud development in apple and sweet cherry. Biotechnol Biotechnol Equip. 2010;24:1549-58. https://doi.org/10.2478/V10133-010-0003-9

Downloads

Download data is not yet available.