Roselle anthocyanin stability profile and its potential role in post-harvest deterioration: A review

Authors

  • Abubakar Abdullahi Lema Biology Department. College of Natural and Applied Sciences Al-Qalam University Kastina, 2137, Katsina state Nigeria. https://orcid.org/0000-0001-9505-9723
  • Nor Hasima Mahmod Department of Plant Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, 22200, Terengganu, Malaysia https://orcid.org/0000-0003-3388-2073
  • Mohammad Moneruzzaman Khandaker Department of Plant Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, 22200, Terengganu, Malaysia. https://orcid.org/0000-0001-7975-2253
  • Mahmoud Dogara Abdulrahman Department of Biology, Faculty of Education, Tishk International University Erbil, Iraq https://orcid.org/0000-0003-0944-7282

DOI:

https://doi.org/10.14719/pst.1336

Keywords:

Calyx, Deterioration, Encapsulation, Stress, Stability, Malvaceae

Abstract

The conversion of roselle calyx into a dried extract without decreasing its consistency is a challenge, given the perishability of the calyx and instability of anthocyanin, which can quickly degrade and develop colored or unwanted brown colors because of its high reactivity. The most critical factors influencing anthocyanins' stability are pH, temperature, light and post-harvest-related enzymes. Besides, the calyx suffered wound injury when removing seed from the calyx, causing stress and eventually, microbial degradation. Nonetheless, mature anthocyanins stimulate plants by responding to stress, especially drought, high salinity, excess light and injury; it is also correlated with improved stress resistance as the genes of individual plants are triggered under these conditions modulate anthocyanin biosynthesis. This work investigates the stability and potential role of roselle anthocyanin in post harvest deterioration. Anthocyanin stability can, therefore, be achieved by maintaining low pH and temperature, acylation, glycosylation, copigmentation and encapsulation. In the quest for roselle deterioration biomarkers, the detection of critical enzymes, such as Chalcone synthase CHS and FH3 Flavanone 3 hydroxylase, would offer insight into the genetic modification of anthocyanin.

Downloads

Download data is not yet available.

References

Ahmed, Abdelatif. Roselle (Hibiscus sabdariffa L.) in Sudan, cultivation and their uses. Bull Environ Pharmacol Life Sci. 2012;1(6):48–54.

Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. Anthocyanins?: Biosynthesis, distribution, ecological role and use of biostimulants to increase their content in plant foods — A Review. 2021; https://doi.org/10.1016/j.foodchem.2019.125515

Newman DJ., Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals. 2021;14(7):1–34. https://doi.org/10.3390/ph14070690

Kouakou TH, Konkon NG, Ayolie K, Obouayeba AP, Abeda ZH, and Kone M. Anthocyanin production in calyx and callus of roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. J Pharmacogn Phytochem. 2015;4(3):9–15.

Pervaiz T, Songtao J, Faghihi F, Haider MS, Fang J. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J Plant Biochem Physiol. 2017;05(02).

Labib S., Akraus M, Wikert T, Richling E. The Pig Caecum Model; A suitable tool to study the intestinal metabolism of flavanoids. Mol Nutr Food Res. 2004;48(4):326–32. https://doi.org/10.1002/mnfr.200400022

Cahlíková L, Ali BH, Havlíková L, Locárek M, Siatka T, Opletal L et al. Anthocyanins of Hibiscus sabdiffera calyces from Sudan. Nat Prod Commun. 2015;10(1):77–9. https://doi.org/10.1177/1934578X1501000120

Aurelio, López D, Edgardo, Gabriel R, Navarro-Galindo, Salvador. Thermal kinetic degradation of anthocyanins in a roselle (Hibiscus sabdariffa L. cv. ’Criollo’) infusion. Int J Food Sci Technol. 2008;43(2):322–25. https://doi.org/10.1111/j.1365-2621.2006.01439.x

Kähkönen MP, Heinonen M. Antioxidant Activity of Anthocyanins and Their Aglycons. Journal of Agricultural and Food Chemistry. 2003;51(3):628–33. https://doi.org/10.1021/jf025551i

Hernández I, Alegre L, van Breusegem F, Munné-Bosch S. How relevant are flavonoids as antioxidants in plants?. Trends Plant Sci. 2009;14(3). https://doi.org/10.1016/j.tplants.2008.12.003

Sytar O, Kumar A, Latowski D, Kuczynska P, Strza?ka K, Prasad MN V. Heavy metal-induced oxidative damage, defense reactions and detoxification mechanisms in plants. Acta Physiol Plant. 2013;35(4):985-99. https://doi.org/10.1007/s11738-012-1169-6.

Konczak I, and Zhang W. Anthocyanins – more than nature’s colours. J Biomed Biotechnol. 2004;239–40.

Wrolstad, E. R. Anthocyanin Pigments — Bioactivity and coloring properties. J Food Sci. 2004;69(5):419–21. https://doi.org/10.1111/j.1365-2621.2004.tb10709.x

Padmavati M, Sakthivel N, Thara KV, Reddy AR. Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry. 1997;46:499–502. https://doi.org/10.1016/S0031-9422(97)00325-7

Werlein H-D, Kutemeyer C, Schatton G, Hubbermann EM, Schwarz K. Influence of elderberry and blackcurrant concentrates on the growth of microorganisms. Food Control 2005;16:729–33. https://doi.org/10.1016/j.foodcont.2004.06.011

Tanaka YNSAO. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54:733–49. https://doi.org/10.1111/j.1365-313X.2008.03447.x

Smeriglio, Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins Research Phyther. 2016;30(8):1265–86. https://doi.org/10.1002/ptr.5642

Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol. 1999;70(1):1–9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x

Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, Nou IS. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene. 2014;550:46–55. https://doi.org/10.1016/j.gene.2014.08.013

Wilska JJ. Food colorants. In Z. E. Sikorski (Ed.), Chemical and functional properties of food components. Boca Rat CRC Press. 2007;245?74. https://doi.org/10.1201/9781420009613

Amr A, Al-Tamimi E. Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colourants. Int J Food Sci Technol. 2007;42(8):1365–2621. https://doi.org/10.1111/j.1365-2621.2006.01334.x

Bagch D, Sen CK, Bagchi M, & Atalay M. Anti-angiogenic, antioxidant and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochem. 2004;69(1):75–80.

Zhao Y, Chen P, Lin L, Harnly JM, Yu L, Li Z. Tentative identification, quantitation and principal component analysis of green pu-erh, green and white teas using UPLC/DAD/MS. Food Chem. 2011;126(3):1269–77. https://doi.org/10.1016/j.foodchem.2010.11.055

Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013;18(9):477–83. http://dx.doi.org/10.1016/j.tplants.2013.06.003

Tsuda T. Dietary anthocyanin-rich plants?: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res. 2012;159–70. https://doi.org/10.1002/mnfr.201100526.

Wallace TC, Guisti MM. Anthocyanins. Adv Nutr. 2015;7. https://doi.org/10.3945/an.115.009233

Future Market Insight. Natural Food Colours Market: Significant Demand for Clean Label and Naturally Sourced Ingredients in Food Products Spurring Revenue Growth: Global Industry Analysis (2013 - 2017) and Opportunity Assessment (2018 - 2028. 2018).

Cortez R, Luna-Vital DA, Margulis D, Gonzalez de Mejia E. Natural pigments: Stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf. 2017;16(1):180–98. https://doi.org/10.1111/1541-4337.12244

Sipahli S. Identification, characterization and application of a natural food colourant from Hibiscus sabdariffa [Internet]. 2016. Available from: http://openscholar.dut.ac.za/handle/10321/2620

Chinese Nutrition Society. Chinese DRIs handbook. Beijing (China): Standards Press of China; 2013. https://doi.org/10.3390/nu9030221

WHO. Global strategy on diet, physical activity, and health: promoting fruit and vegetable consumption around the world. 2004.

Shaik A, Naidu KK, Panda J. a Review on Anthocyanins: a Promising Role on Phytochemistry and Pharmacology. Int Res J Pharm. 2018;9(1):1–9.

Chang YC, Huang HP, Hsu JD, Yang SF, Wang CJ. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol Appl Pharmacol. 2005;205(3):201–12. https://doi.org/10.1016/j.taap.2004.10.014

Hou DX, Tong X, Terahara N, Luo D, Fujii M. Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Arch Biochem Biophys. 2005;440(1):101–19. https://doi.org/10.1016/j.abb.2005.06.002

Wu CH, Huang CC, Hung, CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods. 2016;25:279-90. https://doi.org/10.1016/j.jff.2016.05.018

Jakubczyk K, Dec K, Ka?du?ska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124–47.

Wu HY, Yang KM, Chiang PY. Roselle anthocyanins: Antioxidant properties and stability to heat and pH. Molecules. 2018;23(6).

Walton RJ, Whitten DL, Hawrelak JA. The efficacy of Hibiscus sabdariffa (rosella) in essential hypertension: A systematic review of clinical trials. Aust J Herb Med. 28(2):48–51.

Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol. 2010;127(1):7–10. https://doi.org/10.1016/j.jep.2009.09.059

Ma Y, Ding S, Fei Y, Liu G, Jang H, Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control [Internet]. 2019;106(June):106712. Available from: https://doi.org/10.1016/j.foodcont.2019.106712

Al-Hashimi AG. Antioxidant and Antibacterial Activities of Hibiscus sabdariffa L. extracts. African J Food Sci. 2012;6(21):506–11. https://doi.org/10.5897/AJFS12.099

Fullerton M, Khatiwada J, Johnson JU, Davis S, Williams LL. Determination of antimicrobial activity of sorrel (Hibiscus sabdariffa) on Esherichia coli O157:H7 isolated from food, veterinary and clinical samples. J Med Food. 2011;14(9):950–6. https://doi.org/10.1089/jmf.2010.0200

Mardiah, Zakaria FR, Prangdimurti E, Damanik R. Anti-inflammatory of purple roselle extract in diabetic rats induced by Streptozotocin. Procedia Food Sci [Internet]. 2015;3:182–9. Available from: http://dx.doi.org/10.1016/j.profoo.2015.01.020

Sebastian RS, CW E, JD G, CL M, Steinfeldt, LC et al. New database facilitates characterization of flavonoid intake, sources and positive associations with diet quality among U.S. adults. J Nutr. 2015;145:1239–48. https://doi.org/10.3945/jn.115.213025

European Food Safety Authority. Scientific opinion on the reevaluation of anthocyanins (E 163) as a food additive. EFSA J. 2013;11:1–51. https://doi.org/10.2903/j.efsa.2013.3145

Burton-Freeman B, Sandhu A, Edirisinghe I. Anthocyanins. Nutraceuticals effic saf toxic. 2016;489–500.

Cavalcanti RN, Diego TS, Maria AAM. Non-thermal stabilization mechanisms of anthocyanins in model and food systems - An overview. Food Res Int. 2011;44:499–509. https://doi.org/10.1016/j.foodres.2010.12.007

Patras A, Brunton NP, O’Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol. 2010;21(1):3–11. Available from: http://dx.doi.org/10.1016/j.tifs.2009.07.004

Moldavan B, Daud L, Chisbora CCC. Degradation kinetics of anthocyanin from European Canberry bush (Viburnum opulus L.) fruit extracts effect of temprature, pH and storage solvent molecules. 2012;11655–66.

Hayati EK, Budi US, R. H. Konsentrasi. Total senyawa antosianin ekstrak kelopak bunga rosella (Hibiscus sabdariffa L.): Pengaruh Temperatur dan pH. J Kim. 2012;6(2):138–47.

Oren-Shamir M. Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci. 2009;177(4):310–16. https://doi.org/10.1016/j.plantsci.2009.06.015

Ying Liu, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Front Chem. 2018;6(MAR).

Rivas-Gonzalo J, M S. Analysis of polyphenols. In: Methods in Polyphenols Analysis; Santos-Buelga, C., Williamson, G., (Eds); Royal Society of Chemistry. Vol. 95. (Athenaeum Press, Ltd.): Cambridge, U.K.; 2003. 338-358. p.

Kirca A, Cemero?lu B. Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem. 2003;81(4):583–87. https://doi.org/10.1016/S0308-8146(02)00500-9

Garzón GA, Wrolstad RE. Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. 67; Journal of Food Science. 2002. 1288–99. https://doi.org/10.1111/j.1365-2621.2002.tb10277.x

Sipahli S, Mohanlall V, Mellem, Jason J. Stability and degradation kinetics of crude anthocyanin extracts from H. sabdariffa. Food Sci Technol. 2017;37(2):209–15. https://doi.org/10.1590/1678-457X.14216

Durst RW., Wrolstad RE. Separation and characterization of anthocyanins by HPLC. In Current Protocols in Food Analytical Chemistry; 2001. Wrolstad, R. E., Ed.; John Wiley & Sons: New York,.

Rakkimuthu, Palmurugan, Shanmugapriya. Effect of temperature, light, pH on the stability of anthocyanin pigments in Cocculus hirsutus fruits. Int J Multidiscip Res Mod Educ. 2016;2(2):91–6.

Arroyo-Maya IJ, Campos-Terán J, Hernández-Arana A, McClements DJ. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chem [Internet]. 2016;213:431–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2016.06.105

Martinsen, Karoline B, Aaby, Kjersti, Skrede, Grete. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem [Internet]. 2020;126297. Available from: https://doi.org/10.1016/j.foodchem.2020.126297

Nuzhet T, A S, EHI B. Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L) Beverage: Shalgam. Chem J Agric Food. 2004;52:3807–13. https://doi.org/10.1021/jf049863s

Inggrid HM, Jaka, Santoso H. Natural red dyes extraction on roselle petals. IOP Conf Ser Mater Sci Eng. 2016;162(1).

Jenshi J, Saravanakumar M, Aravindhan KM, Suganya P. The effect of light, temperature, pH on stability of anthocyanin pigments in Musa acuminata bract. Res plant Biol [Internet]. 2011;1(5):5–12. Available from: www.resplantbiol.com

Guan Y, Zhong Q. The improved thermal stability of anthocyanins at pH 5.0 by gum arabic. LWT - Food Sci Technol [Internet]. 2015;64(2):706–12. Available from: http://dx.doi.org/10.1016/j.lwt.2015.06.018

Sharara S, Magda. Copigmentation Effect of Some Phenolic Acids on Stabilization of Roselle (Hibiscus sabdariffa) Anthocyanin extract. Am J Food Sci Technol [Internet]. 2017;5(2):45–52. Available from: http://pubs.sciepub.com/ajfst/5/2/3

Idham Z, Muhamad II, Mohd Setapar SH, Sarmidi MR. Effect of thermal processes on roselle anthocyanins encapsulated in different polymer matrices. J Food Process Preserv. 2012;36(2):176–84. https://doi.org/10.1111/j.1745-4549.2011.00572.x

Idham Z, Muhamad II, Sarmidi MR. Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. J Food Process Eng. 2012;35(4):522–42. https://doi.org/10.1111/j.1745-4530.2010.00605.x

Joana Gomes., Carmo Serrano., Conceição Oliveira 3, Ana Dias and MM. Thermal and light stability of anthocyanins from strawberry by-products non-encapsulated and encapsulated with inulin. Acta Sci Pol Technol Aliment. 2021;20(1):79–92.

Stintzing FC, Carle R. Functional properties of anthocyanins and betalains in plants, food and in human nutrition. Trends food Sci Technol. 15(1):19–38. https://doi.org/10.1016/j.tifs.2003.07.004

Lachman J, Hamouz K, Šulc M, Orsák M, Pivec V, Hejtmánková A et al. Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chem. 2009;114(3):836–43. https://doi.org/10.1016/j.foodchem.2008.10.029

Eiro MJ, Heinonen M. Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. J Agric Food Chem. 50(25):7461-66.

Zozio S, Pallet D, Dornier M. Évaluation de la stabilité des anthocyanes au cours du stockage d’une boisson colorée par des extraits de mures andines (Rubus glaucus Benth.), d’açaï (Euterpe oleracea Mart.) et de carottes noires (Daucus carota L.). Fruits. 2011;66(3):203–15.

Sakakibara H, Ogawa T, Koyanagi A, Kobayashi S, Goda T, Kumazawa S, Shimoi K. Distribution and excretion of bilberry anthocyanins in mice. J Agric Food Chem. 2009;57(17):7681-86. https://doi.org/10.1021/jf901341b

Sakamura S, Watanabe S, Obata Y. Anthocyanase and anthocyanin occurring in eggplant (Solanum melangena L.). Agric Biol Chem. 1965;29(3):181–90. https://doi.org/10.1080/00021369.1965.10858372

Color of anthocyanin solutions expressed in lightness and chromaticity terms. Effect of pH and Type of Anthocyanin. Journal Food Sci. 1974;325. https://doi.org/10.1111/j.1365-2621.1974.tb02886.x

Alappat B, Alappat J. Anthocyanin pigments: Beyond aesthetics. Molecules. 2020;25(23). https://doi.org/10.3390/molecules25235500

Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A Review. Dry Technol. 2014;32(5):509–18. https://doi.org/10.1080/07373937.2013.839562

He K, Li X, Chen X, Ye X, Huang J, Jin Y, et al. Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J Ethnopharmacol [Internet]. 2011;137(3):1135–42. Available from: http://dx.doi.org/10.1016/j.jep.2011.07.033

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298–415. https://doi.org/10.1021/acs.chemrev.8b00593

Huang Y, Zhou W. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chem [Internet]. 2019;278:357–63. Available from: https://doi.org/10.1016/j.foodchem.2018.11.073

Liu J, Tan Y, Zhou H, Muriel Mundo JL, McClements DJ. Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. J Food Eng. 2019;254(January):1–9. https://doi.org/10.1016/j.jfoodeng.2019.02.021

Guldiken B, Gibis M, Boyacioglu D, Capanoglu E, Weiss J. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Res Int [Internet]. 2018;108:491–97. Available from: https://doi.org/10.1016/j.foodres.2018.03.071

Celli GB, Brooks MSL, Ghanem A. Development and evaluation of a novel alginate-based in situ gelling system to modulate the release of anthocyanins. Food Hydrocoll [Internet]. 2016;60:500–58. Available from: http://dx.doi.org/10.1016/j.foodhyd.2016.04.022

Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf. 2021;20(4):3164–91. https://doi.org/10.1111/1541-4337.12772

Ge J, Yue P, Chi J, Liang J, Gao X. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll [Internet]. 2018;74:23–31. Available from: http://dx.doi.org/10.1016/j.foodhyd.2017.07.029

Martín J, Kuskoski EM, Navas MJ, Asuero AG. Antioxidant capacity of anthocyanin pigments. flavonoids - from biosynth to hum heal. 2017;

Zaidel DNA, Sahat NS, Jusoh YMM, Muhamad II. Encapsulation of anthocyanin from roselle and red cabbage for stabilization of water-in-oil emulsion. Agric agric sci procedia [Internet]. 2014;2:82–89. Available from: http://dx.doi.org/10.1016/j.aaspro.2014.11.012

Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int [Internet]. 2020;132(January):109077. Available from: https://doi.org/10.1016/j.foodres.2020.109077

Yousuf B, Gul K, Wani AA, Singh P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A Review. Crit Rev Food Sci Nutr. 2016;56(13):2223–30. https://doi.org/10.1080/10408398.2013.805316

Trouillas P, Sancho-García JC, De Freitas V, Gierschner J, Otyepka M, Dangles O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem Rev. 2016;116(9):4937–82. https://doi.org/10.1021/acs.chemrev.5b00507

Tuominen A, Sinkkonen J, Karonen M, Salminen JP. Sylvatiins, acetylglucosylated hydrolysable tannins from the petals of Geranium sylvaticum show co-pigment effect. Phytochemistry [Internet]. 2015;115(1):239–51. Available from: http://dx.doi.org/10.1016/j.phytochem.2015.01.005

Chatham LA, Howard JE, Juvik JA. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chem [Internet]. 2020;310:125734. Available from: https://doi.org/10.1016/j.foodchem.2019.125734

Bimpilas A, Panagopoulou, M., Tsimogiannis D, Oreopoulou V. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chem. 2016;197:39–46. https://doi.org/10.1016/j.foodchem.2015.10.095

Qian BJ, Liu JH, Zhao SJ, Cai JX, Jing P. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chem [Internet]. 2017;228:526–32. Available from: http://dx.doi.org/10.1016/j.foodchem.2017.01.120

Reshma V. Jadhav SSB. Effect of copigmentation on thermal stability of Hibiscus sabdariffa anthocyanins. Res J Pharm Tech. 2019; https://doi.org/10.5958/0974-360X.2019.00496.7

Liu S, Li S, Lin G, Markkinen N, Yang H, Zhu B et al. Anthocyanin copigmentation and color attributes of bog bilberry syrup wine during bottle aging: Effect of tannic acid and gallic acid extracted from Chinese gallnut. J Food Process Preserv. 2019;43(8):1–13. https://doi.org/10.1111/jfpp.14041

He, Fei, Mu, Lin, Yan, Liang G et al. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules. 2010;15(12):9057–91. https://doi.org/10.3390/molecules15129057

Peng B., Li H., Deng Z. Degradation of anthocyanins in foods during heating process and its mechanism. J Food Safe Qual. 2016;7:3851–58.

Acquaviva R, Russo A, Galvano F, Galvano G, Barcellona ML, Li Volti G. Cyanidin and cyanidin 3-O-?-D-glucoside as DNA cleavage protectors and antioxidants. Cell Biol Toxicol. 2003;19(4):243–52.

Lazzé MC, Pizzala R, Savio M, Stivala LA, Prosperi E, Bianchi L. Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutat Res - Genet Toxicol Environ Mutagen. 2003;535(1):103–15. http://dx.doi.org/10.1016/S1383-5718(02)00285-1

Mayani JM, Desai CS, Desai SC, Vagadia S. Post harvest management of horticultural crops. Post harvest management of horticultural crops. Jaya publishing house Delhi-110095 (India); 2016.

Mahmud Tengku MM. post harvest: An Unsung Solution for post harvest. 2017.

Acedo JZ, Acedo AL. Controlling post harvest physiological deterioration and surface browning in cassava (Manihot esculenta Crantz) roots with hot water treatment. Acta Hortic. 2013;989:357–62.

Naziri D, WQ, BSSW, Viet Phu TBB. The diversity of post harvest losses in cassava value chains in selected developing countries. J Agric Rural Dev Trop Subtrop. 2014;115:111–23.

Salcedo A, ADVBSVOAOPM. Comparative evaluation of physiological post-harvest root deterioration of 25 cassava (Manihot esculenta) accessions: visual vs. hydroxycoumarins fluorescent accumulation analysis. African J Agric Res. 2010;5(3):138–44.

Sayre R, JR B, EB C, CECFJF. The BioCassava plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol. 2011;62:251–72.

García JA, TSHCLA. Non?destructive sampling procedure for biochemical or gene expression studies on post harvest physiological deterioration of cassava roots. Post Harvest Biol Technol. 2013;86:529–35.

Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol. 2012;159(4):1396-1407. https://doi.org/10.3389/fpls.2017.00220

Buschmann H, Rodriguez MX, J T, R. BJ. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot. 2000;86(1):153–60. https://doi.org/10.1006/anbo.2000.1285

Han, Yuanhuai, Gómez-Vásquez, Rocío, Reilly, Kim. Hydroxyproline-rich glycoproteins expressed during stress responses in cassava. Euphytica. 2001;120(1):59–70.

Njoku DN, Amadi CO, Mbe J, Amanze N. Strategies to overcome post-harvest physiological deterioration in Cassava (Manihot esculenta) root: A Review. Niger Agric J [Internet]. 2014;45:51–62. Available from: http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/%0Ahttps://doi.org/10.1016/j.actatropica.2019.02.002%0A https://doi.org/10.1016/j.actatropica.2018.07.028%0Ahttp://dx.doi.org/10.1016/j.ijppaw.201

Uritani I, Hirose S, Data ES, Villegas RJ, Flores P. Relationship between secondary metabolism changes in cassava root tissue and physiological deterioration. Agric Biol Chem. 1983;47(7):1591–98.

Reilly K, D B, F CD, R G-V, J T, R. BJ. Towards identifying the full set of genes expressed during cassava post harvest physiological deterioration. Plant Mol Biol. 2007;64:187–203.

Andersen MD, Busk PK, Svendsen I, Møller BL. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris and substrate specificity of the isolated. J Biol Chem.g 2000;275(3):1966–75.

Kader AA. Increasing Food Availability by Reducing Post harvest Losses of Fresh. 2005.

UN. World Population to hit 9.8 Billion by 2050. 2017.

Yuzhi Jiao. Studies on antioxidant capacity of anthocyanin extract from purple sweet potato (Ipomoea batatas L. African J Biotechnol. 2012;11(27):7046–54. http://dx.doi.org/10.5897/AJB11.3859

HuangHP, ChangYC, CH W, HungCN, CJ W. Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem. 2012;129:1703–09.

Tsai, Jen P, McIntosh, John, Pearce, Philip. Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res Int. 2002;35(4):351–56. https://doi.org/10.1016/S0963-9969(01)00129-6

Kovinich N, Kayanja G, Chanoca A, Otegui MS, Grotewold E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal Behav. 2015;10(7).

Marko D, N P, Z T, S J, G P. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol Nutr Food Res. 2004;48:318–25. https://doi.org/10.1002/mnfr.200400034

Pourcel L, NG I, AJ K, A B-R, GA H, A GE. chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 2013; 2013;74:383-97; https://doi.org/10.1111/tpj.12129

Christie PJ, Alfenito MR, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta. 1994;194.

Garriga M, J R, S R, P C, GA. L. Chlorophyll, anthocyanin and gas exchange changes assessed by spectroradiometry in Fragaria Chiloensis under salt stress. J Integr Plant Biol. 2014;56:505–15.

Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol. 2008;165(14):1491–99.

Zhang, Swarts, Yin. Antioxidant properties of quercetin. Adv Exp Med Biol. 2011;701:283–89. https://doi.org/10.1007/978-1-4419-7756-4_38

Mazza, G., and Miniati E. Anthocyanin in fruits, vegetables and grains. Boca Raton, FL, USA.: CRC Press, Boca Raton, Fl, USA,; 2000. https://doi.org/10.1201/9781351069700

Zha J, Koffas MAG. Production of anthocyanins in metabolically engineered microorganisms?: Current status and perspectives. Synth Syst Biotechnol [Internet]. 2017;2(4):259–66. Available from: https://doi.org/10.1016/j.synbio.2017.10.005

Singh S, Gaikwad KK, Lee YS. Anthocyanin – A natural dye for smart food packaging systems. Korean J Packag Sci Technol. 2018;24(3):167–80. http://dx.doi.org/10.20909/kopast.2018.24.3.167

Goto T. Structure, stability and color variation of natural anthocyanins. 1987;113–58. https://doi.org/10.1007/978-3-7091-8906-1_3

Published

15-12-2021 — Updated on 01-01-2022

How to Cite

1.
Lema AA, Mahmod NH, Khandaker MM, Abdulrahman MD. Roselle anthocyanin stability profile and its potential role in post-harvest deterioration: A review. Plant Sci. Today [Internet]. 2022 Jan. 1 [cited 2024 Nov. 4];9(1):119–131. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1336

Issue

Section

Review Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.