Pollen viability and incompatibility in indigenous rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi)
DOI:
https://doi.org/10.14719/pst.1375Keywords:
Pollen grains, Indigenous crop, Pollen viability, Rice bean, Self- and cross incompatibilityAbstract
Pollen viability, germination and compatibility are essential in determining the success of pollination and seed setting of high-valued crops. Rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) is an underutilized and unexplored indigenous legume with high potential for commercial production. In this study, pollen quality, viability, germination rate and incompatibility among selected six rice bean (V. umbellata) accessions from Barili, Cebu, Philippines were evaluated to determine the barriers and effective pollination habit for increased productivity while retaining the important traits, including high tolerance in poor soils, superior climatic resilience and resistance to pest and diseases. Results of acetocarmine calorimetric assay showed that rice beans’ (V. umbellata) pollens are highly viable, with accessions VU 004 (56.33 ± 4.91%) and VU 007 (54.34 ± 4.53%) having the optimum viability rate. Brewbaker and Kwack medium treated with 0.2 g.l-1 and 0.3 g.l-1 boric acid (H3BO4) enhanced the germination rate in vitro (11.56 ± 5.53% and 9.47 ± 6.50% respectively). Bud (14.96 ± 1.53%) and post-anthesis pollens (10.28 ± 0.94%) have optimum germination rate in 0.2 g.l-1 boric acid media, while anthesis pollens are suitable in media supplemented with sucrose and boric acid alone (12.20 ± 1.50%) and with 0.1 g.l-1 myo-inositol supplementation (8.49 ± 1.86%). Pollination test revealed that rice bean accessions have high self-compatibility (50.76 + 3.45%) and low cross-compatibility (26.57 + 2.49%). The findings provide an important background in understanding the pollen quality and intraspecific interaction among indigenous rice bean (V. umbellata) accessions in Barili, Cebu to improve production and hybridization.
Downloads
References
Tushabe D, Rosbakh S. A Compendium of in vitro germination media for pollen research. Front Plant Sci. 2021;12:1-14. https://doi.org/10.3389/fpls.2021.709945
Webster AD. Factors Influencing the flowering, fruit set and fruit growth of european pears. Acta Hort. 2002;596:699-709. https://doi.org/10.17660/actahortic.2002.596.121
Rathod V, Behera TK, Munshi AD, Durgesh K, Jat GS, Krishnan BG, Sharma N. Pollen viability and in vitro pollen germination studies in Momordica species and their intra and interspecific hybrids. Int J Chem Stud. 2018;6(6):32-40.
Kumarihami PCH, Oh EU, Nesumi A, Song KJ. Comparative study on cross-compatibility between Camellia sinensis var. sinensis (China type) and C. sinensis var. assamica (Assam type) tea. Afr J Agric Res. 2016;11(12):1092-1101. https://doi.org/10.5897/AJAR2015.9951
Wheeler M, de Graaf B, Hadjiosif N, Perry R, Poulter N, Osman K, Vatovec S, Harper A, Franklin C, Franklin-Tong V. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature. 2009;459:992-97. https://doi.org/10.1038/nature08027
Pratap A, Malviya N, Tomar R, Gupta DS, Kumar J. Vigna. In: Pratap A, Kumar J, (editors). Alien gene transfer in crop plants. New York: Springer; 2013:2:163-89. https://doi.org/10.1007/978-1-4614-9572-7
Song XF, Ren SC, Liu CM. Peptide hormones. In: Li J, Li C, Smith SS, editors. Hormone metabolism and signalling in plants. Academic Press; 2017:361-404. https://doi.org/10.1016/b978-0-12-811562-6.00011-6
ga2: naturally occurring alleles, their distribution and role in reproductive isolation. J Hered. 2010;101:737-49. https://doi.org/10.1093/jhered/esq090
de Nettancourt D. Incompatibility and incongruity in wild and cultivated plants. 2nd ed. Berlin: Springer; 2001. https://doi.org/10.1007/978-3-662-04502-2
Maune JF, Camadro EL, Erazzú LE. Cross-incompatibility and self-incompatibility: unrelated phenomena in wild and cultivated potatoes?. Botany. 2018;96(1):33-45. https://doi.org/10.1139/cjb-2017-0070
Bhanu AN, Singh MN, Srivastava K. Crossability studies of interspecific hybridization among Vigna species. Biomed J Sci and Tech Res. 2018;2(5):1-7. https://doi.org/10.26717/BJSTR.2018.02.000818
Singh SK, Singh MN, Choudhary VK, Singh MK, Tigga A. Studies on the interspecific hybrids between mungbean and urdbean. Int J Curr Microbiol App Sci. 2020;9(05):364-69. https://doi.org/10.20546/ijcmas.2020.905.041
Sulusoglu M, Cavusoglu A. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.). Sci World J. 2014. https://doi.org/10.1155/2014/657123
Lankinen A, Lindstrom SAM, D’Hertefeldt T. Variable pollen viability and effects of pollen load size on components of seed set in cultivars and feral populations of oilseed rape. PLoS One. 2018;13(9):e0204407. https://doi.org/10.1371/journal.pone.0204407
Ribeiro GS, Ferreira AF, Neves CM, Sousa FS, de Oliveira C, Alves EM, Sodré G, de Carvalho CA. Aspects of the floral biology and pollen properties of Vigna unguiculata L. Walp (Fabaceae). Afr J Plant Sci. 2013;7(5):149-54. https://doi.org/10.5897/AJPS13.1014
Chijioke OB, Ifeanyi UM, Blessing AC. Pollen behaviour and fertililization impairment in Bambara groundnut (Vigna subterrenea (L.) Verdc.). J Plant Breed Crop Sci. 2010;2:12-23.
Sudha M, Anusuya P, Mahadev NG, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Balasubramanian P. Molecular studies on mungbean (Vigna radiata (L.) Wilczek) and ricebean (Vigna umbellata (Thunb.)) interspecific hybridisation for mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Arch. Phytopathol. Pflanzenschutz. 2013;46(5):503-17. https://doi.org/10.1080/03235408.2012.745055
Pandiyan M, Ramamoorthi N, Ganesh SK, Jebaraj S, Pagarajan P, Balasubramanian P. Broadening the genetic base and introgression of MYMV resistance and yield improvement through unexplored genes from wild relatives in mungbean. Plant Mutation Rep. 2008;2:33-38.
Singh CM, Singh P, Pratap A, Pandey R, Purwar S, Vibha, Douglas CA, Baek K-H, Mishra AK. Breeding for enhancing legumovirus resistance in mungbean: current understanding and future directions. Agronomy. 2019;9:1-25. https://doi.org/10.3390/agronomy9100622
Pandiyan M, Krishnaveni A, Sivakumar A, Sivakumar C, Vaithilingan M, Jamuna E, Radhakrishnan V, Sivakumar B, Senthilkumar P. Development of mungbean yellow mosaic virus (MYMV) resistant genotypes in greengram through introgression of wild genotypes. Int J Curr Microbiol App Sci. 2020;9(6):3787-93. https://doi.org/10.20546/ijcmas.2020.906.449
Nair RM, Götz M, Winter S, Giri RR, Boddepalli VN, Sirari A, Bains TS, Taggar GK, Dikshit HK, Aski M, Boopathi M, Swain D, Rathore A, Anil Kumar V, Lii EC, Kenyon L. Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate. Eur J Plant Pathol. 2017;149:349-65. https://doi.org/10.1007/s10658-017-1187-8
Pattanayak A, Roy S, Sood S, Iangrai B, Banerjee A, Gupta S, Joshi DC. (2019). Rice bean: a lesser known pulse with well-recognized potential. Planta. 2019. https://doi.org/10.1007/s00425-019-03196-1
Bepary RH, Wadikar DD, Neog SB, Patki PE. Studies on physico-chemical and cooking characteristics of rice bean varieties grown in NE region of India. J Food Sci Technol. 2016;54:973-86. https://doi.org/10.1007/s13197-016-2400-z
Katoch R. Nutritional potential of rice bean (Vigna umbellata): An underutilized legume. J Food Sci. 2013;78(1):8-16. https://doi.org/10.1111/j.1750-3841.2012.02989.x
Basavaraja T, Murthy N, Vijay Kumar L, Mallikarjun K. Studies on cross compatibility in interspecific crosses of Vigna radiata × Vigna umbellata species. Legume Research. 2019;42(5):699-704. https://doi.org/10.18805/LR-3974
Chen M, Zuo X-A. Pollen limitation and resource limitation affect the reproductive success of Medicago sativa L. BMC Ecol. 2018;18:1-10. https://doi.org/10.1186/s12898-018-0184-x
Grigoryan K. Safety of Honey. In: Prakash V, Martin-Belloso O, Keener L, Astley SB, Braun S, McMahon H, Lelieveld H, (editors). Regulating safety of traditional and ethnic foods [e-book]. Academic Press; 2016:217-46. https://doi.org/10.1016/B978-0-12-800605-4.00012-8
Gaaliche B, Majdoub A, Trad M, Mars M. Assessment of pollen viability, germination and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agronomy. 2013;1-4. https://doi.org/10.1155/2013/207434
Abdelgadir HA, Johnson SD, Van Staden J. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S Afr J Bot. 2012;79:132-39. https://doi.org/10.1016/j.sajb.2011.10.005
Brewbaker JL, Kwack BH. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot. 1963;50(9):859-65. https://doi.org/10.1002/j.1537-2197.1963.tb06564.x
Diamantino MSAS, Costa MAP, Soares TL, Morais DV, Silva SA, Hilo de Souza E. Morphology and viability of castor bean genotypes pollen grains. Acta Sci-Agron. 2016;38(1):77-83. https://doi.org/10.4025/actasciagron.v38i1.25981
García-Tierrablanca EA, Raya-Pérez JC, Covarrubias-Prieto J, Dorantes-González JAR, Chablé-Moreno F, Ramírez-Pimentel JG, Aguirre-Mancilla C. Assessment of emasculation techniques and maturation of fruit for seed production of pepper (Capsicum annuum L.). Rev Mex Cienc Agríc. 2015;6: 2129-37. https://doi.org/10.29312/remexca.v0i11.782
Bhanu NA, Singh MN, Srivastava K. Efficient hybridization procedure for better pod setting in inter-specific crosses involving vigna species. Adv Plants Agric Res. 2018;8(2):101-05. https://doi.org/10.15406/apar.2018.08.00298
Bomfim IGA, Bezerra AD, Nunes AC Freitas BM, de Aragão FES. Pollination requirements of seeded and seedless mini watermelon varieties cultivated under protected environment. Pesq agropec bras. 2015;50:44-53. https://doi.org/10.1590/S0100-204X2015000100005
Chen J-C, Fang S-C. The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod. 2016;29:179-88. https://doi.org/10.1007/s00497-016-0280-z
Dafni A, Firmage D. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol. 2000;222:113-32. https://doi.org/10.1007/BF00984098
dos Santos KS, Passos AR, Serejo JA, Lino LS, Figueiredo MC, Santos RM. Microsporogenesis and pollen viability in Physalis ixocarpa. Cytologia. 2017;82(4):363-67. https://doi.org/10.1508/cytologia.82
Krycki KC, Simioni C, Dall’Agnol M. Cytoembryological evaluation, meiotic behavior and pollen viability of Paspalum notatum tetraploidized plants. Crop Breed. Appl. Biotechnol. 2016;16:282-88. http://dx.doi.org/10.1590/1984-70332016v16n4a43
Palma-Silva C, dos Santos DG, Kaltchuk-Santos E, Bodanese-Zanettini MH. Chromosome numbers, meiotic behavior and pollen viability of species of Vriesea and Aechmea genera (bromeliaceae) native to Rio Grande Do Sul, Brazil. Am J Bot. 2004;91(6):804-07. https://doi.org/10.3732/ajb.91.6.804
Dapson RW. The history, chemistry and modes of action of carmine and related dyes. Biotechnic and Histochemistry. 2007;82(4-5):173-87. https://doi.org/10.1080/10520290701704188
Kaur D, Singhal VK. Meiotic abnormalities affect genetic constitution and pollen viability in dicots from Indian cold deserts. BMC Plant Biol. 2019;19(10):1-11. https://doi.org/10.1186/s12870-018-1596-7
Singhal VK, Kumar P. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J Biosci. 2008;33(3):371-80. https://doi.org/10.1007/s12038-008-0057-0
Avci S, Sancak C, Can A, Acar A, Pinar NM. Pollen morphology of the genus Onobrychis (Fabaceae) in Turkey. Turk J Bot. 2013;37:669-81. https://doi.org/10.3906/bot-1207-52
Banks H, G. Lewis. Phylogenetically informative pollen structures of “caesalpinioid” pollen (Caesalpinioideae, Cercidoideae, Detarioideae, Dialioideae and Duparquetioideae: Fabaceae). Bot J Linn Soc. 2018;187(1):59-86. https://doi.org/10.1093/botlinnean/boy005
Zulkarnain Z, Eliyanti E, Swari, EI. Pollen viability and stigma receptivity in Swainsona formosa (G.Don) J. Thompson (Fabaceae), an ornamental legume native to Australia. Ornam Hortic. 2019;25(2):158-67. https://doi.org/10.14295/oh.v25i2.2011
Merin EG, Sarada S, Celine VA. Pod set and Pollen Viability Studies in Yard Long Bean (Vigna unguiculata subsp. sesquipedalis). J Hortl Sci. 2019;14(2):169-72. https://doi.org/10.24154/JHS.2019.v14i02.015
Yankova-Tsvetkova E, Yurukova-Grancharova P, Vitkova A. Reproductive biology of the Balkan endemic Sideritis scardica (Lamiaceae). Bot Serbica. 2013;37(1):83-87.
Longkumer Y, Deka, SD. The significance of pollen viability and stigma receptivity on seed setting. Journal of Agroecology and Natural Resource Management. 2015;2(1):51-56.
Wang Y-L, Guan Z-Y, Chen F-D, Fang W-M, Teng N-J. Pollen viability, pistil receptivity, and embryo development in hybridization of Nelumbo nucifera Gaertn. Sci World J. 2012;1-8. https://doi.org/10.1100/2012/678706
López Díaz S, Rodríguez Garay B. Simple methods for in vitro pollen germination and pollen preservation of selected species of the genus Agave. e-Gnosis (online). 2008;6:1-7.
Jayaprakash P, Annapoorani S, Vikas VK, Sivasamy M, Kumar J, Saravannan K, Punniakotti E, Sheeba D. An improved in vitro germination medium for recalcitrant bread wheat (Triticum aestivum L.) pollen. Indian J Genet. 2015;75(4):446-52. https://doi.org/10.5958/0975-6906.2015.00072.3
Jayaprakash P. Pollen germination in vitro. In: Mokwala PW, (editor). Pollination in plants. Copenhagen; IntechOpen: 2018: 97-103. https://doi.org/10.5772/intechopen.75360
Jayaprakash P, Sheeba D, Vikas VK, Sivasamy M, Sabesan T. Development of pollen germination medium to test pollen viability of eggplant and its wild species. Indian J Hort. 2018;75(2): 237-44. https://doi.org/10.5958/0974-0112.2018.00041.5
Chatterjee R, Sarkar S, Narasimha Rao, GM. Improvised media for in vitro pollen germination of some species of Apocynaceae. Int J Environ. 2014;3(3):146-53. https://doi.org/10.3126/ije.v3i3.11074
Pandey N, Gupta B. Improving seed yield of black gram (Vigna mungo L. var. DPU-88-31) through foliar fertilization of zinc during the reproductive phase. J Plant Nutr. 2012;35(11):1683-92. https://doi.org/10.1080/01904167.2012.698349
Muengkaew R, Chaiprasart P, Wongsawad P. Calcium-Boron addition promotes pollen germination and fruit set of mango. Int J Fruit Sci. 2017;12(2):147-58. https://doi.org/10.1080/15538362.2016.1259085
Fang K, Zhang W, Xing Y, Zhang Q, Yang L, Cao Q, Qin L. Boron toxicity causes multiple effects on Malus domestica pollen tube growth. Front Plant Sci. 2016;7:1-12. https://doi.org/10.3389/fpls.2016.00208
Wang Q, Lu L, Wu X, Li Y, Lin J. Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol. 2003;23:345-51. https://doi.org/10.1093/TREEPHYS/23.5.345
Kroh M, Miki-Hirosige H, Rosen W, Loewus F. Inositol metabolism in plants: VII. Distribution and utilization of label from myoinositol-U-'4C and -2-3H by detached flowers and pistils of Lilium longiflorum. Plant Physiol. 1970;45:86-91. https://doi.org/10.1104/pp.45.1.86
Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol. 2013;197:668-79. https://doi.org/10.1111/nph.12037
Mandal AB, Sharma A. Effect of boron and myo-inositol on pollen tube growth of hybrid of bread wheat (Triticum Aestivum L. Emend. Thell.). IOSR-JAVS. 2017;10(4):26-31. https://doi.org/10.9790/2380-1004012631
Kroh M, Miki-Hirosige H, Rosen W, Loewus F. Incorporation of label into pollen tube walls from myoinositol-labeled Lilium longiflorum pistils. Plant Physiol. 1970;45:92-94. https://doi.org/10.1104/pp.45.1.92
Loewus FA. Inositol and plant cell wall polysaccharide biogenesis. In: Lahiri Majumder A, Biswas BB, (editors). Biology of inositols and phosphoinositides. Netherlands: Springer; 2006:39:21-45. https://doi.org/10.1007/0-387-27600-9_2
Xu J, Brearley CA, Lin W-H, Wang Y, Ye R, Mueller-Roeber B, Xu Z-H, Xue, H-W. A role of arabidopsis inositol polyphosphate kinase, AtIPK2a, in pollen germination and root growth. Plant Physiol. 2005;137:94–103. https://doi.org/10.1104/pp.104.045427
Holdaway-Clarke TL, Hepler PK. Control of pollen tube growth: role of ion gradients and fluxes. New Phytol. 2003;159(3):539-63. https://doi.org/10.1046/j.1469-8137.2003.00847.x
Fragallah SADA, Lin S, Li N, Ligate EJ, Chen Y. Effects of sucrose, boric acid, pH, and incubation time on in vitro germination of pollen and tube growth of Chinese fir (Cunnighamia lanceolata L.). Forest. 2019;10:1-16. https://doi.org/10.3390/f10020102
Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R. The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta. 2005;221(2):243-54. https://doi.org/10.1007/s00425-004-1441-0
Schneider S, Schneidereit A, Konrad KR, Hajirezaei MR, Gramann M, Hedrich R, Sauer N. Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane. Plant Physiol. 2006;141(2):565-77. https://doi.org/10.1104/pp.106.077123
Soares TL, De Jesus ON, Dos Santos-Serejo JA, De Oliveira EJ. In vitro pollen germination and pollen viability in passion fruit (Passiflora spp.). Rev Bras Frutic. 2013;35(4):1116-26. https://doi.org/10.1590/S0100-29452013000400023
Mandrone M, Antognoni F, Aloisi I, Potente G, Poli F, Cai G, Faleri G, Parrotta L, Del Duca, L. Compatible and incompatible pollen-styles interaction in Pyrus communis L. show different transglutaminase features, polyamine pattern and metabolomics profiles. Front Plant Sci. 2019;10:1-13. https://doi.org/10.3389/fpls.2019.00741
Ganesh Ram S, Sundaravelpandian K, Kumar M, Vinod KK, Kannan Bapu JR, Raveendran TS. Pollen-pistil interaction in the inter-specific crosses of Sesamum sp. Euphytica. 2006;152:379-85. https://doi.org/10.1007/s10681-006-9225-1
Patil P, Malik SK, Negi KS, John J, Yadav S, Chaudhari G, Bhat KB. Pollen germination characteristics, pollen–pistil interaction and reproductive behaviour in interspecific crosses among Abelmoschus esculentus Moench and its wild relatives. Grana. 2013;52:1-14. https://doi.org/10.1080/00173134.2013.768699
Venkataramana PB, Gowda R, Somta P, Ramesh S, Mohan Rao A, Bhanuprakash K, Srinives P, Gireesh C, Pramila CK. Mapping QTL for bruchid resistance in rice bean (Vigna umbellata). Euphytica. 2016;207:135-47. https://doi.org/10.1007/s10681-015-1551-8
Nameirakpam B, Khanna VK. Studies on crossability and genetic diversity in cowpea (Vigna unguiculata (L.) Walp.). Int J Environ Sci Nat Res. 2018;13(1):8-16. https://doi.org/10.19080/IJESNR.2018.12.555852.
Thiyagu K, Jayamani P, Nadarajan N. Pollen pistil interaction in inter-specific crosses of Vigna sp. Cytologia. 2008;73(3):251-57. https://doi.org/10.1508/cytologia.73.251
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maria Lima D Pascual, Jerome H Ruiz, Jimmy A Posas, Marjohn C Niño
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).