<em>In vitro</em> selection of sorghum (<em>Sorghum bicolor</em> (L) Moench) for polyethylene glycol (PEG) induced drought stress
DOI:
https://doi.org/10.14719/pst.2014.1.2.14Keywords:
Callus induction, Moisture stress, Plant regeneration, Polyethylene glycol, Sorghum bicolorAbstract
Drought is one of the main environmental factors affecting growth and yield of sorghum in arid and semi-arid areas of the world. In vitro selection of Sorghum bicolor for drought tolerance was undertaken by the use of somaclonal variation. The experiment was carried out with a collection of sixteen sorghum genotypes and tested in a completely randomized design. Data were recorded at five different PEG 6000 (polyethylene glycol) levels (0, 0.5, 1.0, 1.5, 2.0% (w/v) treatments)) on coleoptile length (CL), root length (RL), shoot dry weight (SDW), root dry weight (RDW), root number (RN) and statistically analyzed for significant differences. Significant differences were observed among the genotypes, treatments and their interactions for the evaluated plant traits suggesting a great amount of variability for drought tolerance in sorghum. In general, embryogenic callus induction and plantlet regeneration was found to be indirectly proportional to increased PEG concentrations. By taking into consideration all the measured traits, Mann Whitney rank sum test revealed that 76T1#23 and Teshale followed by Gambella-1107 and Melkam showed better drought stress tolerance while Chelenko appeared to be drought sensitive.Downloads
References
Abd Allah, A. A., Shimaa, A., Badawy, B., Zayed, A. & El.Gohary, A. A. (2010). The role of root system traits in the drought tolerance of rice (Oryza sativa L.). World Academy of Science, Engineering and Technology, 4(8), 1156-1160.
Addisie, Y. (2010). Evaluation of sorghum (Sorghum bicolor) genotypes for post-flowering drought resistance (stay-green trait) (M.Sc. thesis). Addis Ababa University, Ethiopia.
Ali, G., Rather, A. C., Ishfaq, A., Dar, S. A., Wani, S. A. & Khan, M. N. (2007). Gene action for grain yield and its attributes in maize (Zea mays L.). International Journal of Agricultural Sciences, 3(2), 278-281.
Ali, M. A., Abbas, A., Awan, S. I., Jabran, K. & Gardezi, S. D. A. (2011). Correlated response of various morpho-physiological characters with grain yield in sorghum landraces at different growth phases. The Journal of Animal and Plant Sciences, 21(4), 671-679.
Ali, M. A., Abbas, A., Niaz, S., Zulkiffal, M. & Ali, S. (2009). Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. International Journal of Agriculture & Biology, 11, 674–680.
Ambika, R., Rajendran, A., Muthiah, R., Manickam, A., Shanmugasundaram, P. & Joel, A. J. (2011). Indices of drought tolerance in Sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Research Journal of Agriculture and Biological Sciences, 7(1), 42-46.
Begum, M. K., Islam, M. O., Miah, M. A. S., Hossain, M. A. & Islam, N. (2011). Production of somaclone in vitro for drought stress tolerant plantlet selection in sugarcane (Saccharum officinarum L.). The Agriculturalist, 9(1 & 2), 18-28.
Bibi, A., Sadaqat, H. A., Akram, H. M. & Mohammed, M. I. (2010). Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition. International Journal of Agriculture & Biology, 12, 451–455.
Bibi, A., Sadaqat, H. A., Tahir, M. H. N. & Akram, H. M. (2012). Screening of sorghum (Sorghum bicolor var Moench) for drought tolerance at seedling stage in polyethylene glycol. The Journal of Animal & Plant Sciences, 22(3), 671-678.
Blum, A. (2004). Sorghum physiology. In H. T. Nguyen and A. Blum (Eds.), Physiology and biotechnology integration for plant breeding (pp: 141–223). New York: Marcel Dekker. doi:10.1201/9780203022030.ch4
Cabelguenne, M. & Debaeke, P. (1998). Experimental determination and modeling of the soil water extraction capacities of crops of maize, sunflower, soya bean, sorghum and wheat. Plant and Soil, 202, 175-192. doi:10.1023/A:1004376728978
Creelman, R. A., Mason, H. S., Bensen, R. J., Boyer, J. S. & Mullet, J. E. (1990). Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Plant Physiology, 92, 205–214. doi:10.1104/pp.92.1.205 PMid:16667248
Dhanda, S. S., Sethi, G. S. & Behl, R. K. (2004). Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy Crop Science, 190, 6–12. doi:10.1111/j.1439-037X.2004.00592.x
Ejeta, G. & Knoll, J. E. (2007). Marker-assisted selection in sorghum. In R. K. Varshney & R. Tuberosa. (Eds.), Genomic-assisted crop improvement genomics applications in crops (pp: 187–205). Netherlands: Springer Netherlands. doi:10.1007/978-1-4020-6297-1_9
Ezatollah, F., Jamshidi, B., Cheghamirza, K. & Teixeira da Silva, J. A. (2012). Evaluation of drought tolerance in bread wheat (Triticum aestivum L.) using in vivo and in vitro techniques. Annals of Biological Research, 3 (1), 465-476.
Farsiani, A. & Ghobadi, M. E. (2009). Effects of PEG and NaCl Stress on Two Cultivars of Corn (Zea mays L.) at Germination and Early Seedling Stages. World Academy of Science, Engineering and Technology, 57, 382-385.
Fekade, S. G. & Daniel, R. K. (1992). Osmotic adjustment in sorghum. Plant Physiology, 99, 577-582. doi:10.1104/pp.99.2.577
Freed, R.D. & Eisensmith, S. P. (1986). MSTAT-C. Michigan, Lansing, USA: Michigan State University Press.
Gerda, M. B. & Christopher, D. V. (2007). Can GM sorghum impact Africa? Trends in Biotechnology, 26(2), 64-69.
Gill, R. K., Sharma, A. D., Singh, P. & Bhullar, S.S. (2002). Osmotic stress induced changes in germination, growth and soluble sugar content of Sorghum bicolor (L.) Moench seeds. Bulgarian Journal of Plant Physiology, 28, 12- 25.
Gomez, K. A. & Gomez, A. A. (1976). Statistical Procedures for agricultural Research with Special Emphasis on rice. Philippines:, International Rice Research. PMCid:PMC1006560
Hsiao T. C. (1973). Plant response to water stress. Annual Review of Plant Physiology, 24, 519-570. doi:10.1146/annurev.pp.24.060173.002511
Ingram J. & Bartels, D. (1996). The Molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 47, 337-403. doi:10.1146/annurev.arplant.47.1.377 PMid:15012294
Jaleel C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R. & Paneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100-105.
Kamran, M., Shahbaz, M., Ashraf, M. & Akram, N. A. (2009). Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pakistan Journal of Botany, 41(2), 621-632.
Kebede, H., Subudhi, P. K., Rosenow, D. T. & Nguyen, H. T. (2001). Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. moench). Theoretrical and Applied Genetics, 103, 266-276. doi:10.1007/s001220100541
Khayatnezhad, M., Gholamin, R., Jamaatie-Somarin, S. H. & Zabihi-Mahmoodabad, R. (2010). Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. World Applied Sciences Journal, 11(5), 504-506.
Khodarahmpour, Z. (2011). Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. African Journal of Biotechnology, 10(79), 18222-18227.
Matsuura, A., Inanaga, S. & Sugimoto, Y. (1996). Mechanism of interspecific differences among four graminaceous crops in growth response to soil drying. Japanese Journal of Crop Science, 65, 352-360.
Mohammadkhani, N. & Heidari, R. (2008). Water stress induced by polyethylene glycol 6000 and sodium chloride in two corn cultivars. Pakistan Journal of Biological Sciences, 11(1), 92-97. doi:10.3923/pjbs.2008.92.97 PMid:18819599
Muhammad, H., Khan, S. A., Shinwari, Z. K., Khan, A. L., Ahmad, N. & In-Jung, L. (2010). Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pakistan Journal of Botany, 42(2), 977-986.
Murashige, T. & Skoog, A. (1962). A revised medium for rapid growth and bioassays with tobacco tissues culture. Physiology of Plants, 15, 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
Prasad, P. V. V., Staggenborg, S. A. & Ristic, Z. (2008). Impact of drought and heat stress on physiological, growth and yield processes. In L. H. Ahuja & S. A. Saseendran (Eds.) Modeling water stress effects on plant Growth Processes, Vol. 1 of the Advances in Agricultural Systems Modeling: Trasndisciplinary Research, Synthesis and Application Series. Madison, Wisconsin: ASA-CSSA.
Rajendran, R. A., Muthiah, A. R., Manickam, A., Shanmugasundaram, P. & John, J. A. (2011). Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Research Journal of Agriculture & Biological Sciences, 7, 42-46.
Ramu, S. V., Palaniappan, S. P. & Panchanathan, R. (2008). Growth and Dry matter Partitioning of Sorghum under Moisture Stress Condition. Journal of agronomy and crop science, 166(4), 273-277. doi:10.1111/j.1439-037X.1991.tb00914.x
Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Communication in Biometry and Crop Science, 3(1), 29-44.
Raziuddin, Z., Swati, J., Bakht, B., Ullah, M., Shafi, M., Akmal, M. & Hassan, G. (2010). In situ assessment of morpho-physiological response of wheat (Triticum aestivum L.) genotypes to drought. Pakistan Journal of Botany, 42(5), 3183-3195.
Rhodes, D. & Samara, Y. (1994). The effect of water stress on callus and somatic embryos formation of rice (Oryza sativa L.) cv. Jasmine cultured in vitro. Boca Raton, Florida: CRC press.
Sharp, R. E. & Davies, W. J. (1979). Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147, 43–49. doi:10.1007/BF00384589 PMid:24310893
Takele, A. (2000). Seedling emergence and of growth of sorghum genotypes under variable soil moisture deficit. Acta Agronomica Hungarica, 48(1), 95-102. doi:10.1556/AAgr.48.2000.1.10
Tsago, Y., Andargie, M. & Takele, A. (2013). In vitro screening for drought tolerance in different sorghum (Sorghum bicolor (L.) Moench) varieties. Journal of stress physiology and biochemistry, 9(3), 72-83.
Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B. & Ejeta, G. (1997). Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Molecular Breeding, 3, 439–348. doi:10.1023/A:1009673126345
Turner, N.C. (1974). Stomatal behaviour and water status of maize, sorghum, and tobacco under field conditions. Plant Physiology, 53, 360-365. doi:10.1104/pp.53.3.360
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).