Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Sustainable prospective of some selected species from Moraceae and Araceae family of Northeast India: A Review

DOI
https://doi.org/10.14719/pst.1427
Submitted
5 August 2021
Published
05-03-2022
Versions

Abstract

The north-eastern region of India is a rich hub of floristic diversity. The intricate relationship between forest resources and indigenous people is a key to sustainability and rural livelihood. The objective is to review on some plants that has possible function for sustainable source of food. The regional people have been utilizing various species of the two commonly available angiosperm plant families viz. Araceae (Alocasia macrorrhizos, Colocasia esculenta) and Moraceae (Ficus carica, F. semicordata, F. auriculata) as a source of food, herbal medicine, and fodder plants. A variety of natural compounds found among various members of these two families are alkaloids viz., Alocasin B, ?-monopalmitin in A. macrorrhizos; flavonoids viz., orientin, isovitexin, in C. esculenta; betulinic acid, lupeol in F. auriculata; quercetin, leucine, tryptophan in F. carica; terpenoids like ?-thuzene, ?-pinene in F. semicordata; besides the presence of phenols, tannins, saponins, fats, carbohydrates, amino acids and proteins, minerals like Ca, Mg, K, Mn, Cu. The rich tradition of indigenous herbal healthcare practices for curing various ailments are widespread among the rural communities. The review entails the indigenous practices with pharmacological efficacy, phytochemistry and sustainable prospects of Moraceae and Araceae which are widely used in food, nutraceutical and medicinal aspects. These lesser-known plant species may attribute to ecological restoration, bioremediation of toxic compounds, discovery of novel therapeutics, sources of carbon sink in near future as well.

References

  1. Sachs JD, Kroll K, Lafortune G, Fuller G, Woelm F. The decade of action for the Sustainable Development Goals. Sustainable Development Reports 2021. UK. Cambridge. Cambridge University Press. 2021. p. 9-10. DOI: 10.1017/9781009106559.
  2. Blay-Palmer A, Roberta S, Custof J. A Food politics of the possible? Growing sustainable food systems through networks of knowledge, Agriculture and Human Values. 2016;33(1):27-43. DOI: https://doi.org/10.1007/s10460-015-9592-0
  3. Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of Northeast India with reference to ethnobotany. Indian J Tradit Knowl. 2009;8(1):96–103. Available from: http://nopr.niscair.res.in/handle/123456789/2979
  4. Tamokou JDD, Mbaveng AT, Kuete V. Antimicrobial activities of African medicinal spices and vegetables. Medicinal spices and vegetables from Africa. Academic Press, 2017:207-37. DOI: https://doi.org/10.1016B978-0-12-809286-6.00008-X
  5. Mahbubur RAHM and Barman AK. A Preliminary Taxonomic Account of the Family Caesalpiniaceae of Rajshahi. Discovery. 2017;53(256):243–54. Available from: www.discoveryjournals.com
  6. Chaudhary LB, Sudhakar JV, Kumar A, Bajpai O, Tiwari R, Murthy GVS. Synopsis of the genus Ficus L. (Moraceae) in India. Taiwania. 2012; 57(2):193–216. DOI: https://doi.org/10.6165/tai.2012.57(2).193
  7. Gogoi P, Nath N. Diversity and inventorization of angiospermic flora in Dibrugarh District, Assam, Northeast India, Plant Science Today. 2021;8(3):621-28. DOI: https://doi.org/10.14719/pst.2021.8.3.1118.
  8. Nabis B. Karyomorphological studies in three species of Alocasia (Schott.) G.Don.- An ethno-medicinally and economically important genus. Int J Life-Sciences Sci Res. 2018;4(6):2116–21. DOI: https://doi.org/10.21276/ijlssr.2018.4.6.8.
  9. Singh SK, Patel JR, Dangi A. Physicochemical, qualitative and quantitative determination of secondary metabolites and antioxidant potential of A. macrorrhizos leaf extracts. Pharma Innov. J. 2019;8(1): 399–404. Available from: https://www.thepharmajournal.com/archives/?year=2019&vol=8&issue=1&ArticleId=2937
  10. Elsbaey M, Ahmed KFM, Elsebai MF, Zaghloul A, Amer MMA, Lahloub M-F. Cytotoxic constituents of Alocasia macrorrhiza. Zeitschrift fur Naturforsch. - Sect. C J. Biosci. 2017;72(1-2):21–25. DOI: https://doi.org/10.1515/znc-2015-0157
  11. Banik S, Ibrahim Md. Amin MN, Moghal Md. MR, Majumder MS, Alam Md.K et al. Determination of biological properties of A. macrorrhizos. A medicinal plant. World Journal of Pharmaceutical Research. 2014;3(9):193-210. Available from: https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1414994325.pdf
  12. Rahman MM, Hossain MA, Siddique SA, Biplab KP. Antihyperglycemic, antioxidant and cytotoxic activities of A. macrorrhizos (L.) rhizome extract. Turkish J Biol. 2012;36(5):574–79. DOI: https://doi.org/10.3906/biy-112-11
  13. Fang S, Lin C, Zhang Q, Wang L, Lin P, Zhang J et al. Anticancer potential of aqueous extract of Alocasia macrorrhiza against hepatic cancer in vitro and in vivo. J Ethnopharmacol. 2012;141(3): 947–56. DOI: https://doi.org/10.1016/j.jep.2012.03.037.
  14. Islam M K, Mahmud I, Saha S, Sarar AB, Mondal H, Hossain ASM MA et al. preliminary pharmacological evalution of Alocasia indica Schott tuber. Journal of Integreteed Medicine. 2013.11(5):343-51. DOI: https://doi.org/10.3736/jintegrmed2013045
  15. Cambie RC and Ferguson LR. Potential functional foods in the traditional Maori diet. Mutat. Res. - Fundam Mol Mech Mutagen. 2003;523–24:109–17. DOI: https://doi.org/10.1016/s0027-5107(02)00344-5
  16. Kowalczyk E, Kopff A, Fijalkowski P, Kpff M, Niedworok J, Blaszczyk J et al. Effect of anthocyanins on selected biochemical parameters in rats exposed to cadmium. Acta Biochim Pol. 2003;50(2):543–48. DOI: https://doi.org/10.18388/abp.2003_3707
  17. Prajapati R, Kalariya M, Umbarkar. C. esculenta: A potent indigenous plant. Int J Nutr Pharmacol Neurol Dis. 2011;1(2):90-96. DOI: https://doi.org/10.4103/2231-0738.84188
  18. Pawar HA, Choudhary PD, Kamat SR. An overview of traditionally used herb, C. esculenta, as a Phytomedicine. Med Aromat. Plants 2018;7(4):1–7. DOI: 10.4172/2167-0412.1000317
  19. Abaza AM, Ahmed YM, Abbas MG, Soliman HA, Ashour HK. Chemical Constituents of C. esculenta leaves extract in Relation to its Self Defense against the Cotton leafworm, Spodoptera littoralis (Boisd.) 2015;13(1): 1–7. Available from: https://cat.journals.ekb.eg/article_18373_0bbe958f040abdb485e95f73dce5c8a3.pdf
  20. Saklani S, Chandra S. Phytochemical screening of Garhwal Himalaya wild edible fruit Ficus palmata. Int J Pharm Tech Res. 2012;4(3): 1185–91. Available from: https://www.researchgate.net/publication/285789934
  21. Lindawati NY. Determination of total flavonoid levels on leaf stalks ethanol extract of taro (C. esculenta (L.) Schott). J Farm. (Journal Pharmacy) 2018;1:58–66. DOI: 10.37013/jf.v1il.65
  22. Arlin BD, Fadjar KH, Nunuk H. An identification of nutrition, phytochemicals and antioxidants Taro (Colocasia sp). In: Proceedings of 1st Asian Conference on Humanities, Industry and Technology for Society. 2019 30-31 July; Surabaya, Indonesia. EAI. DOI: https://doi.org/10.4108/eai.30-7-2019.2287620
  23. Ufelle SA, Onyekwelu KC, Ghasi S, Ezeh CO, Ezeh RC, Esom EA. Effects of C. esculenta leaf extract in anemic and normal wistar rats. J Med Sci. 2018;38(3):102–06. DOI: https://doi.org/10.4103/jmedsci.jmedsci_80_17
  24. Vasant OK, Vijay BG, Virbhadrappa SR, Dilip NT, Ramahari MV, Laxamanrao BS. Antihypertensive and diuretic effects of the aqueous extract of C. esculenta Linn. leaves in experimental paradigms. Iran J Pharm Res. 2012;11(2): 621–34. Available from: https://pubmed.ncbi.nlm.nih.gov/24250487/
  25. Kubde MS, Khadabadi SS, Farooqui IA, Deore SL. In-vitro anthelmintic activity of C. esculenta. Sch Res Libr. 2010;2(2): 82–85. Available from: https://www.scholarsresearchlibrary.com/abstract/invitro-anthelmintic-activity-of-colocasia-esculenta-9491.html
  26. Yang AH, Yeh KW. Molecular cloning, recombinant gene expression and antifungal activity of cystatin from Taro (C. esculenta cv. Kaosiung no. 1). Planta 2015;221(4):493–501. DOI: https://doi.org/10.1007/s00425-004-14628
  27. Kim KH, Moon EJ, Kim SY, Lee KR. Anti-melanogenic fatty acid derivatives from the tuber-barks of Colocasia antiquorum var. esculenta. Bull Korean Chem Soc. 2010;31(7):2051–53. DOI: 10.5012/bkcs.2010.31.7.2051
  28. Kalariya M, Parmar S, Sheth N. Neuropharmacological activity of hydroalcoholic extract of leaves of C. esculenta. Pharm Biol. 2010;48(11): 1207–12. DOI: https://doi.org/10.3109/13880201003586887
  29. Pereira PR, Mattos EBA, Correa ACNTF, Vericimo MA, Paschoalin VMF. Anticancer and immunomodulatory benefits of Taro (C. esculenta) corms, an underexploited tuber crop. Int J Mol Sci. 2021;22(1):1–33. DOI: 10.3390%2Fijms22010265
  30. Nur-Hadirah K, Arifullah M, Nazahatul AA, Klaiklay S, Chumkaew P, Norhazlini MZ et al. Total phenolic content and antioxidant activity of an edible Aroid, C. esculenta (L.) Schott. IOP Conf Ser Earth Environ Sci. 2021;756: 012044. DOI: https://doi.org/10.1016/j.foodchem.2016.10.084
  31. Dhanraj N, Kadam MS, Patil KN, Mane VS. Phytochemical screening and Antibacterial Activity of Western Region wild leaf C. esculenta. Int Res J Biol Sci. 2013;2(10): 1-6. Available from: http://www.isca.in/ /IJBS/Archive/v2/i10/4.ISCA-IRJBS-2013-142.pdf
  32. CO E. Iroaganachi M, Eleazu KC. Ameliorative potentials of Cocoyam (C. esculenta L.) and unripe plantain (Musa paradisiaca L.) in renal and liver growth in streptozotocin induced diabetic rats. J Diabetes Metab. 2013;2(2):140-47. DOI: https://doi.org/10.1155/2013/160964
  33. Li HM, Hwang SH, Kang BG, Hong JS, Lim SS. Inhibitory effects of C. esculenta (L.) Schott constituents on aldose reductase. Molecules 2014;19(9): 13212–24. DOI: 10.3390/molecules190913212
  34. Boban PT, Nambisan B, Sudhakaran PR. Hypolipidaemic effect of chemically different mucilages in rats: A comparative study. Br J Nutr. 2006;96(6):1021–29. DOI: https://doi.org/10.1017/bjn20061944
  35. Sakano Y, Mutsuga M, Tanaka R, Suganuma H, Inakuma T, Toyoda M et al. Inhibition of human lanosterol synthase by the constituents of C. esculenta (Taro). Biol Pharm Bull. 2005;28(2):299–304. DOI: https://doi.org/10.1248/bpb.28.299
  36. Brown AC, Reitzenstein JE, Liu J, Jadus MR. The anti-cancer effects of poi (C. esculenta) on colonic adenocarcinoma cells in vitro. Phyther Res. 2005;19(9):767–71. DOI: https://doi.org/10.1002/ptr.1712
  37. Pereira PR, Winter HC, Vericimo MA, Meagher JL, Stuckey JA, Goldstein IJ et al. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from C. esculenta. Biochim Biophys Acta - Proteins Proteomics 2015;1854(1):20–30. DOI: https://doi.org/10.1016/j.bbapap.2014.10.013
  38. Oliveira AP, Valentao P, Pereira JA, Silva BM, Tavares F, Andeade PB. F. carica L.: Metabolic and biological screening. Food Chem Toxicol. 2009;47(11):2841–46. DOI: https://doi.org/10.1016/j.fct.2009.09.004
  39. Oliveira AP, Silva LR, Andrade PB, Valentao P, Silva BM, Goncales RF. Further insight into the latex metabolite profile of F. carica. J Agric Food Chem. 2010;58(20):10855–63. DOI: 10.1021/jf1031185
  40. Russo F, Caporaso N, Paduano A, Sacchi R. Phenolic compounds in fresh and dried figs from cilento (Italy), by considering Breba Crop and Full Crop, in Comparison to Turkish and Greek Dried Figs. J Food Sci. 2014;79(7):C1278-84. DOI: 10.1111/1750-3841.12505
  41. Vaya J and Mahmood S, Vaya - 2006 - Flavonoid content in leaf extracts of the Fig (F. carica L.), Carob (Ceratonia siliqua L.) and Pistachio (Pistacia lentiscus L.).pdf. 2006;28(3-4):169–75. DOI: https://doi.org/10.1002/biof.5520280303
  42. Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE et al. Antioxidant activities and anthocyanin content of fresh fruits of common Fig (F. carica L.). J Agric Food Chem. 2006;54(20):7717–23. DOI: https://doi.org/10.1021/jf060497h
  43. Saeed MA, Sabir AW. Irritant potential of triterpenoids from F. carica leaves. Fitoterapia 2002;73(5):417–20. DOI: https://doi.org/10.1016/s0367-326x(02)00127-2
  44. Patil VV, Bhangale Sc, Patil VR. Studies on immunomodulatory activity of F. carica. Int J Pharm Pharm Sci. 2010;2(4):97–99. Available from: https://eijppr.com/storage/models/article/XWaqgGbQO58KKfy7mHINGDiyn9jrhWqrsaHNDh1WYMR90DtVkU5pymgL05Uo/ficus-carica-linn-a-review-on-its-pharmacognost
  45. Khodarahmi GA, Ghasemi N, Hassanzadeh F, Safaie M. Cytotoxic effects of different extracts and latex of F. carica L. on HeLa cell line. Iran J Pharm Res. 2011;10(2):273–77. Available from: https://pubmed.ncbi.nlm.nih.gov/24250354/
  46. Jeong M.R, Kim H-Y, Cha J-D. Antimicrobial activity of methanol extract from F. carica leaves against oral bacteria. J Bacteriol Virol. 2009;39(2): 97–102. DOI: http://dx.doi.org/10.4167/jbv.2009.39.2.97
  47. Aref HL, Salah KBH, Chaumout JP, Feikh A, Aouni M, Said K. In vitro antimicrobial activity of four F. carica latex fractions against resistant human pathogens (antimicrobial activity of F. carica latex). Pak J Pharm Sci. 2010;23(1):53–58. Available from: http://www.pakmedinet.com/PJPS.
  48. Gilani AH, Mehmood MH, Janbaz KH, Khan A-U, Saeed SA. Ethnopharmacological studies on antispasmodic and antiplatelet activities of F. carica. J Ethnopharmacol. 2008;119(1):1–5. DOI: https://doi.org/10.1016/j.jep.2008.05.040
  49. Lee HY, Kim J-H, Jeung H-W, Lee C-U, Kim D-s, Li b et al. Effects of F. carica paste on loperamide-induced constipation in rats. Food Chem Toxicol. 2012;50(3-4):895–902. DOI: https://doi.org/10.1016/j.fct.2011.12.001
  50. Kumari A, Verma R, Sharma M, Chauhan P, Kumar A. Evaluation of Phytochemical, antioxidant, antibacterial and anti-cancerous activity of F. auriculata Lour. and Osyris wightiana Wall. ex Wight. Pharmacol. Life Sci Bull Env Pharmacol Life Sci. 2018;7(8):645-70. Available from: https://www.researchgate.net/publication 329436057_Evaluation_of_Phytochemical_antioxidant_antibacterial_and_anti-cancerous_activity_of_Ficus_auriculata_Lour_and_Osyris_wightiana_Wall_ex_Wight
  51. Canal JR, Torres MD, Romero A, Perez C. A chloroform extract obtained from a decoction of F. carica leaves improves the cholesterolaemic status of rats with streptozotocin-induced diabetes. Acta Physiol Hung. 2000;87(1):71–76. DOI: https://doi.org/10.1556/aphysiol.87.2000.1.8
  52. Asadi F, Poukabir M, Maclaren R. Alterations to lipid parameters in response to fig tree (F. carica) leaf extract in chicken liver slices. Turkish J Vet Anim Sci. 2006;30(3):315–18. Available from: https://www.researchgate.net/publication/288392707_Alterations_to_lipid_parameters_in_response_to_fig_tree_Ficus_carica_leaf_extract_in_chicken_liver_slices
  53. Patil BR and Ageely HM. Antihepatotoxic activity Of C. esculenta leaf juice. Int J Adv Biotechnol Res. 2011;2(2): 296–304. Available from: https://www.researchgate.net/publication/267385770_Antihepatotoxic_activity_of_Colocasia_esculenta_leaf_juice
  54. Mujeeb M, Khan AS, Aeri V, Ali B. Hepatoprotective activity of the ethanolic extract of F. Carica Linn. leaves in carbon tetrachloride-induced hepatotoxicity in rats. Iran J Pharm Res. 2011 Spring;10(2):301-06. Available from: ncbi.nlm.nih.gov/pmc/articles/PMC3828912/
  55. Deka K, Nath N. Traditional hepatoprotective herbal medicine of Bongaigaon District, Assam (N.E. India), 2015;2(5):265-76. Available from: imedpub.com/articles/traditional-hepatoprotective-herbal-medicine-of-bongaigaon-district-assam-neindia.pdf
  56. Rubnov S, Kasman Y, Rabinowitz R, Schlesinger M, Mechoulam R. Suppressors of cancer cell proliferation from Fig (F. carica) resin: Isolation and structure elucidation. J Nat Prod. 2001;64(7): 993–96. DOI: 10.1021/np000592z
  57. Shahinuzzaman M, Zahira Y, Anur FH, Akhtar P, Kadir NHA, Hasan AKM et al. In vitro antioxidant activity of F. carica L. latex from 18 different cultivars. Scientific Reports, 10(1):10852. DOI: https://doi.org/10.1038/s41598-020-67765-1
  58. Yang XM, Yu W, Ou Z-p, Ma H-L, Liu W-M, Ji X-J Antioxidant and immunity activity of water extract and crude polysaccharide from F. carica L. fruit. Plant Foods Hum Nutr. 2009;64(2):167–73. DOI: 10.1007/s11130-009-0120-5
  59. Badgujar SS, Vainav VP., Atmaram HB., Raghunath TM. Traditional uses, phytochemistry and pharmacology of F. Carica: A review. Pharm BIOL. 2014;52(11): 1487-503. DOI: https://doi.org/10.3109/13880209.2014.892515
  60. Patil M. Quantification of phytochemical constituents and in vitro antioxidant activity in the leaves of Citrus medica. Int J Curr Pharm Res. 2017;9(5): 119–23. DOI: http://dx.doi.org/10.22159/ijcpr.2017v9i5.22153
  61. Gupta Shashi, Rabinarayan A, Harisha CR, Vinay S. Detailed pharmacognostical and phytochemical screening of stem and stem bark of F. semicordata Buch-Ham. ex Sm. An extra pharmacopoeial drug of ayurveda. Pharmacognosy Journal. 2019;11(6): 1303-11. DOI: http://dx.doi.org/10.5530/pj.2019.11.202
  62. Al-Snafi AE. Phenolics and flavonoids contents of medicinal plants, as natural ingredients for many therapeutic purposes-A review. IOSR J Pharm. 2020;10(7):42–81. Available from: http://iosrphr.org/papers/vol10-issue7/Ser-2/B1007024281.pdf
  63. Knudsen JT, Erksson R, Gershenzon J, Stahl B. Diversity and distribution of floral scent. Bot. Rev. 2006;72(1):1–120. Available from: https://www,jstor.org/stable/435451
  64. Baral R. Current perspectives on medicinal and aromatic plants phytochemical screening, free radical scavenging and in vitro anti- bacterial activity studies of various extracts of selected medicinal plants of Nepal. 2021;4(1): 22–35. DOI: https://doi.org/10.38093/cupmap.896273
  65. Gaire BP, Lamichhane R, Sunar CB, Shilapkar A, Neupane S, Panta S. Phytochemical screening and analysis of antibacterial and antioxidant activity of F. auriculata (Lour.) stem bark. Pharmacogn J. 2011;3(21): 49–55. DOI: https://doi.org/10.5530/PJ.2011.21.8
  66. Al Fishawy AM, Zayed RA, Afifi SM. Phytochemical and pharmacological studies of F. auriculata Lour. (Family: Moraceae) cultivated in Egypt. Planta Med. 2011;4:189-95. DOI: http://dx.doi.org/10.1055/s-0031-1282654
  67. Liu F, Yang Z, Zheng Xi, Luo S, Zhang K, Li G. Nematicidal coumarin from F. carica L. J Asia Pac Entomol. 2011;14(1):79–81. DOI: https://doi.org/10.101/j.aspn.2010.10.006
  68. Sudhakar P, Thenmoghi V, Srivignesh S, Dhanalakshmi M. C. esculenta (L.) Schott: Pharmacognostic and pharmacological review. J Pharmacogn Phytochem. 2020;9(4):1382–86. DOI: https://doi.org/10.227/phyte.2020.v9.j4s.11937
  69. Ahmad J. Evaluation of antioxidant and antimicrobial activity of F. carica leaves: An in vitro approach. J Plant Pathol Microbiol. 2012;04(1):1–4. DOI: https://doi.org/10.4172/2157-7471-100157
  70. Gupta S, Ranade A, Gayakwad S, Acharya R, Pawar S. Hepatoprotective activity of F. semicordata Buch.-Ham. ex Sm. leaves aqueous extract on d-galactosamine induced toxicity in hepg2 cell line. Indian J Nat Prod Resour. 2020;11(4):239–43. Available from: http://nopr.niscair.res.in/handle/123456789/56149
  71. Mawa S, Husain K, Jantan I. F. carica L. (Moraceae): Phytochemistry, traditional uses and biological activities. Evidence-based complement Altern Med. 2013. DOI: https://doi.org/10.1155/2013/974256
  72. Kaur V, Kumar T, Upadhyaya K. An overview of the phytomedicinal approaches of F. semicordata. World J Pharm Pharm Sci. 2016;5: 606–16. Available from https://www.wjpps.com/Wjpps_controller/abstract_id/4849
  73. Gupta S, Acharya R. Ethnomedicinal claims of F. semicordata Buch.-Ham. ex Sm.: A review. Int J Green Pharm. 2018;12(1): S206–S213. DOI: https://doi.org/10.22377/ijgp.v12101.1621
  74. Tamta G, Mehra N, Tandon S. Traditional uses, phytochemical and pharmacological properties of F. auriculata: A review. Journal of Drug Delivery and Therapeutics. 2021;11(3):163–69. DOI: http://dx.doi.org/10.22270/jddt.v11i3.4853
  75. Zhang Z, Wang X.M, Liao S, Tian H. Taxonomic treatment of the F. auriculata complex (Moraceae) and typification of some related names. Phytotaxa. 2019;399(3):203–08. DOI: http://dx.doi.org/10.11646/phytotaxa.399.3.4
  76. Zhang LF, Zhang Z, Wang XM, Gao HF, Tian HZ, Li HQ. Molecular phylogeny of the F. auriculata complex (Moraceae). Phytotaxa 2018;362(1): 39–54. DOI: http://dx.doi.org/10.11646/phytotaxa.362.1.3
  77. Hazarika P, Kakati N, Kalita RK. Indigenous knowledge in relation to conservation and management of forest biodiversity of Assam. Lifesciences Leafl. 2015;63:64–93. Available from: http://lifesciencesleaflets.ning.com
  78. Singh N, Gajurel P, Rethy P. Ethnomedicinal value of traditional food plants used by the Zeliang tribe of Nagaland. Indian J Tradit Knowl. 2015;14(2):298–305. Available from: http://nopr.niscair.res.in/bitstream/123456789/32087/1/IJTK%2014(2)%20298-305.pdf
  79. Singh TT, Sharma HM. An ethnobotanical study of monocotyledonous medicinal plants used by the scheduled caste community of Andro in Imphal East District, Manipur (India. Life Sci Informatics Publ. 2018;4(4):55–72. Available from: http://www.rjlbpcs.com/article-pdf-downloads/2018/20/278.pdf
  80. Das G, Sharma RK. Diversity of wild plants used by the Jamatia tribe of Tripura for their edible underground plant parts. Int J Pharm Biol Sci. 2019;9(2):326–30. DOI: http://dx.doi.org/10.21276/ijpbs.2019.9.2.44
  81. Ghosh D, Parida P. Medicinal plants of Assam, India?: A mini review. Int J Pharmacol Pharm Sci. 2015;2(6):5–10. Available from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.735.1075&rep=rep1&type=pdf
  82. Sonowal R, Barua I. Ethnomedical practices among the Tai-Khamyangs of Assam, India. Stud Ethno-Medicine. 2011;5(1):41–50. DOI: https://doi.org/10.1080/09735070.2011.11886390
  83. Gogoi P, Namita N. Indigenous Knowledge of ethnomedicinal plants by Assamese community, Journal of Threatened Taxa, 2021;13(5):18297-312. DOI: 10.11609/jott.6772.13.5.18297-18312.
  84. Tamuli P, Ghosal A. Ethnomedicinal plants used by major ethnic groups of Assam (India) for curing skin diseases. Int J Herb Med. 2017;5(4): 140–44. Available from: https://www.florajournal.com/archives/2017/vol5issue4/PartB/6-3-20-495.pdf
  85. Lalmuanpuii J, Rosangkima G, Lamin H. Ethno-medicinal practices among the Mizo ethnic group in Lunglei district, Mizoram. Sci Vis. 2013;13(1):24–34. Available from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.4681&rep=rep1&type=pdf
  86. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72(2):146–16. DOI: https://doi.org/10.1016/s0367-326x(00)00278-1
  87. Das N, Saikia SP, Sarkar S, Devi S. Medicinal plants of North-Kamrup district of Assam used in primary healthcare system. Indian J Tradit Knowl. 2006;5(4):489–93. Available from http://hdl.handle.net/123456789/6928
  88. Sikdar M, Dutta U. Traditional phytotherapy among the Nath people of Assam. Stud. Ethno-Medicine. 2008;2(1): 39–45. DOI: http://dx.doi.org/10.1080/09735070.2008.11886313
  89. Saikia B, Borthakur SK, Saikia N. Medico-ethnobotany of Bodo tribals in Gohpur of Sonitpur district, Assam. Indian J Tradit Knowl. 2010;(9):52–54. Available from http://nopr.niscair.res.in/bitstream/123456789/7154/1/IJTK%209(1)%2052-54.pdf
  90. Kutum A, Sarmah RHD. An ethnobotanical study of Mishing tribe living in fringe villages of Kaziranga National Park of Assam. Int J. 2011;1(4):45–61. Available from https://www.cibtech.org/J-LIFE-SCIENCES/PUBLICATIONS/2011/Vol%201%20No.%204/38-4-JLS-ROSHAN.pdf
  91. Athokpam R, Bawari M, Duttachoudhry M. A review on medicinal plants of Manipur with special reference to Hepatoprotection. Int J Adv Pharm Res. 2014;5(3):182-91. Available from: 275215291_A_REVIEW_ON_MEDICINAL_PLANTS_OF_MANIPUR_WITH_SPECIAL_REFERENCE_TO_HEPATOPROTECTION
  92. Panmei R, Gajurel PR, Singh B. Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, Northeast India. J Ethnopharmacol. 2019;235:164–82. DOI: 10.1016/j.jep.2019.02.009
  93. Rai PK, Lalramnghinglova H. Ethnomedicinal plant resources of Mizoram, India: Implication of traditional knowledge in health care system. Ethnobot Leafl. 2010;14:274–305. Available from: publication/274832147_Ethnomedicinal_Plant_Resources_of_Mizoram_India_Implication_of_Traditional_Knowledge_in_Health_Care_System
  94. Singh S, Phurailatpam AK, Wangchu L, Ngangbam P, Chanu TM. Traditional medicinal knowledge of underutilized minor fruits as medicine in Manipur. Int J Agric Sci. 2014;4(8): 241–47. Available from: chfcau.org.in/sites/default/files/pdf/epub/Underutilized-minor-fruits-as-medicine-in-Manipur.pdf
  95. Murtem G, Chaudhry P. An ethnobotanical study of medicinal plants used by the tribes in Upper Subansiri district of Arunachal Pradesh, India. Am J Ethnomedicine. 2016;3(3):35–49. Available from: imedpub.com/articles/an-ethnobotanical-study-of-medicinal-plants-used-by-the-tribes-in-upper-subansiri-district-of-arunachal-pradesh-india.pdf
  96. Das A, Borthakur MK. Hepatoprotective activity of Chenopodium album Linn. Against paracetamol induced liver damaged in Albino rats. International journal of pharmaceutical Sciences and Research. 2019;11(11): 5605-10. DOI: 10.13040/IJPSR.0975-8232.11(11):5605-10
  97. Naghdi M, Maghbool M, Seifalah-Zade M, Mahaldashtian M, Makoolati Z, Kouhpayeh SA et al. Effects of common fig (F. carica) leaf extracts on sperm parameters and testis of Mice intoxicated with formaldehyde. Evidence Based complementary and Alternative Medicine. 2016; 2539127,9. DOI: 10.1155/2016/2539127.
  98. Sharma RK, Geyal AK, Yadav SK, Bhat RA. Antifertility activity of Ficus religiosa fruits extracts on Goat uterus in vitro. Int J Drug Dev and Res. 2013;5(4):330-35.Available from: https://www.ijddr.in/drug-development/antifertility-activity-of-ficus-religiosa-fruits-extract-on-goat-uterus-invitro.php?aid=5798
  99. Asraf K, Haque MR, Amir M, Ahmed N, Ahmed W, Sultan S et al. An overview of phytochemical and biological activities; Ficus deltoidei Jack and other Ficus spp. J pharm Bioallied Sci. 2021; 13(1):11-25. DOI: 10.4103/jpbs.JPBS_232_19
  100. Fulda S. Betulinic acid. A natural product with anticancer activity. Mol Nutr Food Res. 2009;53(1):140-46. DOI: 10.1002/mnfr.200700491

Downloads

Download data is not yet available.