This is an outdated version published on 20-02-2022. Read the
most recent version.
Research Articles
Early Access
Phytofabrication of gold and bimetallic gold-silver nanoparticles using water extract of wheatgrass (Triticum aestivum), their characterization and comparative assessment of antibacterial potential
Department of Microbiology, Dolphin (P.G) College of Science and Agriculture, Chunni Kalan, F.G. Sahib, Punjab, India
Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences, Manduwala, Dehradun, Uttarakhand, India
Bio-Nanotechnology Lab, Division: H-1, Central Scientific Instruments Organization (CSIO), Chandigarh (U.T), India
HR-TEM Facility Lab, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
Abstract
In the present study, gold (AuNPs) and gold-silver bimetallic nanoparticles (Au-Ag BMNPs) were fabricated by using water extract of leaves of Triticum aestivum - a crop plant, and their bactericidal potency was checked against selected pathogenic bacterial strains. The phytofabricated AuNPs and BMNPs were analyzed for their physical attributes using UV–Visible and Fourier transformed infrared spectroscopy, Dynamic light scattering, High-resolution transmission electron microscopy, Energy-dispersive X-ray spectroscopy. HRTEM analysis revealed that both kinds of NPs were highly crystalline in nature and of spherical and oval-shaped. AuNPs size was found in the range of 5-40 nm, whereas BMNPs showed their size in the range of 5-30 nm. HRTEM results were corroborated by DLS results which revealed the average hydrodynamic diameter of AuNPs and BMNPs in the range of 29.08 and 26.56 nm, respectively. UV-visible spectroscopy showed high-intensity single spectral peaks at 540 and 480 nm for AuNPs and BMNPs, respectively. FTIR analysis demonstrated that protein, flavanones, hydroxyl, carboxylate groups, and reducing sugars were responsible for reducing and capping of both NPs. Bactericidal efficiency of synthesized NPs was evaluated using agar-well diffusion and XTT-colorimetric assays against K. pneumoniae, S. typhimurium, E. aerogenes, E. coli, M. luteus, S. aureus, S. mutans and S. epidermidis. K. pneumonia and S. typhimurium were found to be the most sensitive bacteria towards BMNPs-mediated (MIC: 400 µg/ml) and AuNPs-mediated toxicity (MIC: 800 µg/ml). It was observed that BMNPs generally possessed more powerful bactericidal effect against all bacterial strains in comparison to AuNPs. MIC and MBC values were observed in the concentration range of 400 µg/ml-1.5 mg /ml for different bacterial strains. Furthermore, it was demonstrated that phytosynthesized AuNPs have their own bactericidal effect, but at higher concentrations (>100 µg/ml), and bactericidal effect of BMNPs was due to the synergistic effect of both Ag and Au ions, which was also observed to be concentration-dependent.
References
- Baker S, Pasha A, Satish S. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens. Saudi Pharm J. 2017;25(1):44-51. https://doi.org/10.1016/j.jsps.2015.06.011
- Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y. Functionalized gold and silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomedicine. 2020;16(15):1823-35. https://doi.org/10.2147/IJN.S236683
- Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018; 67(6):537-43. https://doi.org/10.1111/lam.13082
- Tang Y, Xu J, Xiong C, Xiao Y, Zhang X, Wang S. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Analyst. 2019;144(8):2643-48. https://doi.org/10.1039/C9AN00032A
- Lopez-Miranda JL, Esparza R, Rosas G, Pérez R, Estévez-González M. Catalytic and antibacterial properties of gold nanoparticles synthesized by a green approach for bioremediation applications. 3 Biotech. 2019; 9(4):135. https://doi.org/10.1007/s13205-019-1666-z
- Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomed. 2017;12:2457-68. https://doi.org/10.2147/IJN.S124442
- Ahmed F, Faisal SM, Ahmed A, Husain Q. Beta galactosidase mediated bio-enzymatically synthesized nano-gold with aggrandized cytotoxic potential against pathogenic bacteria and cancer cells. J Photochem Photobiol B. 2020;209:111923. https://doi.org/10.1016/j.jphotobiol.2020.111923
- Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A. Bimetallic nanoparticles: Preparation, properties and biomedical applications. Artif Cells Nanomed Biotechnol. 2016;44(1):376-80. https://doi.org/10.3109/21691401.2014.953632
- Pathak PK, Kumar A, Prasad BB. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron. 2019;127:10-18. https://doi.org/10.1016/j.bios.2018.11.055
- Yaseen T, Pu H, Sun DW. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019;36(5):762-78. https://doi.org/10.1080/19440049.2019.1582806
- Reddy PB, K Mallikarjuna GN, Si-Hyun P. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic and antibacterial studies. Mat Res Exp. 2017; 4:085010. https://doi.org/10.1088/2053-1591/aa80a2
- Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Front Chem. 2020;8:412. https://doi.org/10.3389/fchem.2020.00412
- Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, silver and palladium nanoparticles: A chemical tool for biomedical applications. Front Chem. 2020;8:376. https://doi.org/10.3389/fchem.2020.00376
- Baker S, Nagendra PMN, Chouhan RS, Mohan KK, Satish S. Development of bioconjugated nano-molecules against targeted microbial pathogens for enhanced bactericidal activity. Mater Chem Phys. 2020;242:122292. https://doi.org/10.1016/j.matchemphys.2019.122292
- Ramasamy M, Lee JH, Lee J. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl. 2016;31(3):366-78. https://doi.org/10.1177/0885328216646910
- Chakravarty I, Narasimha P, Singh S, Kundu K, Singh P, Kundu S. Synergistic oligodynamic effect of mycogenic bimetallic nanoparticles with daptomycin for controlling pathogens. Int J Pharm Sci Res. 2018;9(5):1788-96. https://doi.org/10.13040/IJPSR.0975-8232.9(5).1788-96
- Dahoumane SA, Wijesekera K, Filipe CD, Brennan JD. Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures. J Colloid Interface Sci. 2014;416:67-72. https://doi.org/10.1016/j.jcis.2013.10.048
- Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed. 2018;21(13):3571-91. https://doi.org/10.2147/IJN.S157958
- Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Coll Inter Sci. 2018;510:237-45. https://doi.org/10.1016/j.jcis.2017.09.006
- Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019;101177. https://doi.org/10.1038/s41467-019-09058-4
- Bakkeren E, Diard M, Hardt WD. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbio. 2020. https://doi.org/10.1038/s41579-020-0378-z
- Sanchez-Lopez E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomater. 2020;292(10):1-39. https://doi.org/10.3390/nano10020292
- Murali M, Raj MA, Akhil SA, Liji RS, Kumar SS, Nair AM, Kumar NS. Preliminary phytochemical analysis of Wheat grass leaf extracts. Int J Pharm Sci Rev Res. 2016;40(1):307-12.
- Suriyavathana M, Roopavathi I, Vijayan V. Phytochemical characterization of Triticum aestivum (Wheat grass). J Pharmaco Phytochem. 2016;5(1):283-86.
- Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9(1):13071. https://doi.org/10.1038/s41598-019-49444-y
- Lehrer RI, Rosenman M. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Microbio Met. 1991;137:167-73. https://doi.org/10.1016/0022-1759(91)90021-7
- Pahal V, Kaur A, Dadhich KS. Effect of combination therapy using cow (Bos indicus) urine distillate and some indian medicinal plants against selective pathogenic gram-negative bacteria. Int J Pharm Sci Res. 2017;8(5):2134-42. http://dx.doi.org/10.13040/IJPSR.0975-8232.8 (5).2134-42
- Al-Bakri GA, Afifi FU. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J Microbio Met. 2007;68:19-25. https://doi.org/10.1016/j.mimet.2006.05.013
- Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–75. https://doi.org/10.1021/nl301934w
- Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against gram negative Vibrio cholerae. Sci Rep. 2020;10(1):1463. https://doi.org/10.1038/s41598-019-57399-3
- Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochem. 2011; 46: 2007-13. https://doi.org/10.1016/j.procbio.2011.07.011
- Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa- sinensis. J Physica E. 2010;42:1417-24. https://doi.org/10.1016/j.physe.2009.11.081
- Jayaseelan C, Ramkumar R, Abdul A, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod. 2013;45:423-29. https://doi.org/10.1016/j.indcrop.2012.12.019
- Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Coll Surf B Biointerf. 2010;79(1):235-40. https://doi.org/10.1016/j.colsurfb.2010.04.003
- Lagashetty A, Ganiger SK, Shashidhar. Synthesis, characterization and antibacterial study of Ag-Au Bi-metallic nanocomposite by bioreduction using Piper betle leaf extract. Heliyon. 2019;5(12):e02794. https://doi.org/10.1016/j.heliyon.2019.e02794
- Salunke GR, Ghosh S, Santosh Kumar RJ et al. Rapid efficient synthesis and characterization of silver, gold and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine. 2014; 9:2635-53. https://doi.org/10.2147/IJN.S59834
- Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1-11. https://doi.org/10.1016/j.micpath.2016.10.011
- Ganaie SU, Tasneem A, Abbasi SA. Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus, J Exp Nanosci. 2016;11:6:395-417. https://doi.org/10.1080/17458080.2015.1070311
- Li S, Yuechao Y, pengcheng L, Wenxian S, Lixin Z. Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Adv. 2018;8:3964-73. https://doi.org/10.1039/C7RA13650A
- Meena KM, Jacob J, Philip D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:185-92. https://doi.org/10.1016/j.saa.2014.08.079
- Katas H, Lim CS, Nor Azlan AYH, Buang F, Mh Busra MF. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J. 2019;27(2):283-92. https://doi.org/10.1016/j.jsps.2018.11.010
- Lomeli-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A, Webster TJ, Cholula-Díaz JL. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomed. 2019;27(14):2171-90. https://doi.org/10.2147/IJN.S192757
- Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4: 3974–83. https://doi.org/10.1039/C3RA44507K
- Singh P, Pandit S, Beshay M, Mokkapati VRSS, Garnaes J, Olsson ME, Sultan A, Mackevica A, Mateiu RV, Lütken H, Daugaard AE, Baun A, Mijakovic I. Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artif Cells Nanomed Biotechnol. 2018b; 46(sup3):S886-S899. https://doi.org/10.1080/21691401.2018.1518909
- Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep. 2019; 9(1):3122. https://doi.org/10.1038/s41598-019-39528-0.
- Kumar S, Majhi RK, Singh A, Mishra M, Tiwari A, Chawla S, Guha P, Satpati B, Mohapatra H, Goswami L, Goswami C. Carbohydrate-Coated Gold-Silver Nanoparticles for Efficient Elimination of Multidrug Resistant Bacteria and in vivo Wound Healing. ACS Appl Mater Interf. 2019;11(46):42998-43017. https://doi.org/10.1021/acsami.9b17086
- Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomed. 2016;4(11):1889-97. https://doi.org/10.2147/IJN.S102488
- Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822. https://doi.org/10.1039/b303808b
- Rao Y, Inwati GK, Singh M. Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Fut Sci OA. 2017; 3(4):FSO239. https://doi.org/10.4155/fsoa-2017-0062
- Moustafa NE, Alomari AA. Green synthesis and bactericidal activities of isotropic and anisotropic spherical gold nanoparticles produced using Peganum harmala L leaf and seed extracts. Biotechnol Appl Biochem. 2019; 66(4):664-72. https://doi.org/10.1002/bab.1782
- Qais QFA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem Appl. 2019; 4649506:1-12. https://doi.org/10.1155/2019/4649506
- Amerkhanova SK, Shlyapov RM, Afanas’ev DA, Uali AS. The optical and sorption properties of films of polyvinyl alcohol with silver nanoparticles. Plastiche Mas. 2012; 3:12-14.
- Folorunso A, Akintelu S, Oyebamiji, AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruct Chem. 2019; 9:111-17. https://doi.org/10.1007/s40097-019-0301-1
- Fakhri A, Tahami S, Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B. 2017;169:21-26. https://doi.org/10.1016/j.jphotobiol.2017.02.014
- Syed B, Karthik N, Bhat P, Bisht N, Prasad A, Satish S, Nagendra PMN. Phyto-biologic bimetallic nanoparticles bearing antibacterial activity against human pathogens. King Saud Uni Sci. 2019;31:798-803. https://doi.org/10.1016/j.jksus.2018.01.008
- Bankura K, Maity D, Mollick MR, Mondal D, Bhowmick B, Roy I, Midya T, Sarkar J, Rana D, Acharya K, Chattopadhyay D. Antibacterial activity of Ag-Au alloy NPs and chemical sensor property of AuNPs synthesized by dextran. Carbohydr Polym. 2014; 107:151-57. https://doi.org/10.1016/j.carbpol.2014.02.047
- Ahmed HB, Attia MA, El-Dars FMSE, Emam HE. Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures: (Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol. 2019;128:214-29. https://doi.org/10.1016/j.ijbiomac.2019.01.093
- Sharma M, Monika, Thakur P, Saini RV, Kumar R, Enza Torino E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci Rep. 2020;10:10934. https://doi.org/10.1038/s41598-020-67673-4
- Enrique MA, Guillermina FF, Ocampo-García BE, López-Téllez G, López-Ortega J, Rogel-Ayala DG, Sánchez-Padilla D. Antibacterial efficacy of gold and silver nanoparticles functionalized with the Ubiquicidin (29–41) antimicrobial peptide. J Nanomat Article. 2017; ID 5831959. https://doi.org/10.1155/2017/5831959
- Alti D, Veeramohan Rao M, Rao DN, Maurya R, Kalangi SK. Gold-silver bimetallic nanoparticles reduced with herbal leaf extracts induce ROS-mediated death in both promastigote and amastigote stages of Leishmania donovani. ACS Omega. 2020; 5(26):16238-45. https://doi.org/10.1021/acsomega.0c02032
- Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale. 2020;12:3731-49. https://doi.org/10.1039/C9NR10700B
- Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, Quezada H, Olivares-Trejo JJ. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11(7):1265-76. https://doi.org/10.1039/c9mt00084d
- Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):286-327. https://doi.org/10.1080/10590501.2015.1055161
- Yang P, Pageni P, Rahman MA, Bam M, Zhu T, Chen YP, Nagarkatti M, Decho AW, Tang C. Gold nanoparticles with antibiotic-metallopolymers toward broad-spectrum antibacterial effects. Adv Health C Mater. 2019; 8(6):e1800854. https://doi.org/10.1002/adhm.201800854
Downloads
Download data is not yet available.