This is an outdated version published on 20-02-2022. Read the most recent version.
Forthcoming

Phytofabrication of gold and bimetallic gold-silver nanoparticles using water extract of wheatgrass (Triticum aestivum), their characterization and comparative assessment of antibacterial potential

Authors

DOI:

https://doi.org/10.14719/pst.1449

Keywords:

AuNPs, Ag-Au BMNPs, Bactericidal effect, NPs, XTT-colorimetric assay

Abstract

In the present study, gold (AuNPs) and gold-silver bimetallic nanoparticles (Au-Ag BMNPs) were fabricated by using water extract of leaves of Triticum aestivum - a crop plant, and their bactericidal potency was checked against selected pathogenic bacterial strains. The phytofabricated AuNPs and BMNPs were analyzed for their physical attributes using UV–Visible and Fourier transformed infrared spectroscopy, Dynamic light scattering, High-resolution transmission electron microscopy, Energy-dispersive X-ray spectroscopy. HRTEM analysis revealed that both kinds of NPs were highly crystalline in nature and of spherical and oval-shaped. AuNPs size was found in the range of 5-40 nm, whereas BMNPs showed their size in the range of 5-30 nm. HRTEM results were corroborated by DLS results which revealed the average hydrodynamic diameter of AuNPs and BMNPs in the range of 29.08 and 26.56 nm, respectively. UV-visible spectroscopy showed high-intensity single spectral peaks at 540 and 480 nm for AuNPs and BMNPs, respectively. FTIR analysis demonstrated that protein, flavanones, hydroxyl, carboxylate groups, and reducing sugars were responsible for reducing and capping of both NPs. Bactericidal efficiency of synthesized NPs was evaluated using agar-well diffusion and XTT-colorimetric assays against K. pneumoniae, S. typhimurium, E. aerogenes, E. coli, M. luteus, S. aureus, S. mutans and S. epidermidis. K. pneumonia and S. typhimurium were found to be the most sensitive bacteria towards BMNPs-mediated (MIC: 400 µg/ml) and AuNPs-mediated toxicity (MIC: 800 µg/ml). It was observed that BMNPs generally possessed more powerful bactericidal effect against all bacterial strains in comparison to AuNPs. MIC and MBC values were observed in the concentration range of 400 µg/ml-1.5 mg /ml for different bacterial strains. Furthermore, it was demonstrated that phytosynthesized AuNPs have their own bactericidal effect, but at higher concentrations (>100 µg/ml), and bactericidal effect of BMNPs was due to the synergistic effect of both Ag and Au ions, which was also observed to be concentration-dependent.

Downloads

Download data is not yet available.

References

Baker S, Pasha A, Satish S. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens. Saudi Pharm J. 2017;25(1):44-51. https://doi.org/10.1016/j.jsps.2015.06.011

Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y. Functionalized gold and silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomedicine. 2020;16(15):1823-35. https://doi.org/10.2147/IJN.S236683

Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018; 67(6):537-43. https://doi.org/10.1111/lam.13082

Tang Y, Xu J, Xiong C, Xiao Y, Zhang X, Wang S. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine. Analyst. 2019;144(8):2643-48. https://doi.org/10.1039/C9AN00032A

Lopez-Miranda JL, Esparza R, Rosas G, Pérez R, Estévez-González M. Catalytic and antibacterial properties of gold nanoparticles synthesized by a green approach for bioremediation applications. 3 Biotech. 2019; 9(4):135. https://doi.org/10.1007/s13205-019-1666-z

Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomed. 2017;12:2457-68. https://doi.org/10.2147/IJN.S124442

Ahmed F, Faisal SM, Ahmed A, Husain Q. Beta galactosidase mediated bio-enzymatically synthesized nano-gold with aggrandized cytotoxic potential against pathogenic bacteria and cancer cells. J Photochem Photobiol B. 2020;209:111923. https://doi.org/10.1016/j.jphotobiol.2020.111923

Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A. Bimetallic nanoparticles: Preparation, properties and biomedical applications. Artif Cells Nanomed Biotechnol. 2016;44(1):376-80. https://doi.org/10.3109/21691401.2014.953632

Pathak PK, Kumar A, Prasad BB. Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosens Bioelectron. 2019;127:10-18. https://doi.org/10.1016/j.bios.2018.11.055

Yaseen T, Pu H, Sun DW. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019;36(5):762-78. https://doi.org/10.1080/19440049.2019.1582806

Reddy PB, K Mallikarjuna GN, Si-Hyun P. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic and antibacterial studies. Mat Res Exp. 2017; 4:085010. https://doi.org/10.1088/2053-1591/aa80a2

Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Front Chem. 2020;8:412. https://doi.org/10.3389/fchem.2020.00412

Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, silver and palladium nanoparticles: A chemical tool for biomedical applications. Front Chem. 2020;8:376. https://doi.org/10.3389/fchem.2020.00376

Baker S, Nagendra PMN, Chouhan RS, Mohan KK, Satish S. Development of bioconjugated nano-molecules against targeted microbial pathogens for enhanced bactericidal activity. Mater Chem Phys. 2020;242:122292. https://doi.org/10.1016/j.matchemphys.2019.122292

Ramasamy M, Lee JH, Lee J. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl. 2016;31(3):366-78. https://doi.org/10.1177/0885328216646910

Chakravarty I, Narasimha P, Singh S, Kundu K, Singh P, Kundu S. Synergistic oligodynamic effect of mycogenic bimetallic nanoparticles with daptomycin for controlling pathogens. Int J Pharm Sci Res. 2018;9(5):1788-96. https://doi.org/10.13040/IJPSR.0975-8232.9(5).1788-96

Dahoumane SA, Wijesekera K, Filipe CD, Brennan JD. Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures. J Colloid Interface Sci. 2014;416:67-72. https://doi.org/10.1016/j.jcis.2013.10.048

Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed. 2018;21(13):3571-91. https://doi.org/10.2147/IJN.S157958

Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Coll Inter Sci. 2018;510:237-45. https://doi.org/10.1016/j.jcis.2017.09.006

Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019;101177. https://doi.org/10.1038/s41467-019-09058-4

Bakkeren E, Diard M, Hardt WD. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbio. 2020. https://doi.org/10.1038/s41579-020-0378-z

Sanchez-Lopez E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomater. 2020;292(10):1-39. https://doi.org/10.3390/nano10020292

Murali M, Raj MA, Akhil SA, Liji RS, Kumar SS, Nair AM, Kumar NS. Preliminary phytochemical analysis of Wheat grass leaf extracts. Int J Pharm Sci Rev Res. 2016;40(1):307-12.

Suriyavathana M, Roopavathi I, Vijayan V. Phytochemical characterization of Triticum aestivum (Wheat grass). J Pharmaco Phytochem. 2016;5(1):283-86.

Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9(1):13071. https://doi.org/10.1038/s41598-019-49444-y

Lehrer RI, Rosenman M. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Microbio Met. 1991;137:167-73. https://doi.org/10.1016/0022-1759(91)90021-7

Pahal V, Kaur A, Dadhich KS. Effect of combination therapy using cow (Bos indicus) urine distillate and some indian medicinal plants against selective pathogenic gram-negative bacteria. Int J Pharm Sci Res. 2017;8(5):2134-42. http://dx.doi.org/10.13040/IJPSR.0975-8232.8 (5).2134-42

Al-Bakri GA, Afifi FU. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J Microbio Met. 2007;68:19-25. https://doi.org/10.1016/j.mimet.2006.05.013

Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–75. https://doi.org/10.1021/nl301934w

Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against gram negative Vibrio cholerae. Sci Rep. 2020;10(1):1463. https://doi.org/10.1038/s41598-019-57399-3

Kumar KP, Paul W, Sharma CP. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochem. 2011; 46: 2007-13. https://doi.org/10.1016/j.procbio.2011.07.011

Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa- sinensis. J Physica E. 2010;42:1417-24. https://doi.org/10.1016/j.physe.2009.11.081

Jayaseelan C, Ramkumar R, Abdul A, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod. 2013;45:423-29. https://doi.org/10.1016/j.indcrop.2012.12.019

Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Coll Surf B Biointerf. 2010;79(1):235-40. https://doi.org/10.1016/j.colsurfb.2010.04.003

Lagashetty A, Ganiger SK, Shashidhar. Synthesis, characterization and antibacterial study of Ag-Au Bi-metallic nanocomposite by bioreduction using Piper betle leaf extract. Heliyon. 2019;5(12):e02794. https://doi.org/10.1016/j.heliyon.2019.e02794

Salunke GR, Ghosh S, Santosh Kumar RJ et al. Rapid efficient synthesis and characterization of silver, gold and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine. 2014; 9:2635-53. https://doi.org/10.2147/IJN.S59834

Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1-11. https://doi.org/10.1016/j.micpath.2016.10.011

Ganaie SU, Tasneem A, Abbasi SA. Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus, J Exp Nanosci. 2016;11:6:395-417. https://doi.org/10.1080/17458080.2015.1070311

Li S, Yuechao Y, pengcheng L, Wenxian S, Lixin Z. Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Adv. 2018;8:3964-73. https://doi.org/10.1039/C7RA13650A

Meena KM, Jacob J, Philip D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:185-92. https://doi.org/10.1016/j.saa.2014.08.079

Katas H, Lim CS, Nor Azlan AYH, Buang F, Mh Busra MF. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J. 2019;27(2):283-92. https://doi.org/10.1016/j.jsps.2018.11.010

Lomeli-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A, Webster TJ, Cholula-Díaz JL. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomed. 2019;27(14):2171-90. https://doi.org/10.2147/IJN.S192757

Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4: 3974–83. https://doi.org/10.1039/C3RA44507K

Singh P, Pandit S, Beshay M, Mokkapati VRSS, Garnaes J, Olsson ME, Sultan A, Mackevica A, Mateiu RV, Lütken H, Daugaard AE, Baun A, Mijakovic I. Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artif Cells Nanomed Biotechnol. 2018b; 46(sup3):S886-S899. https://doi.org/10.1080/21691401.2018.1518909

Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep. 2019; 9(1):3122. https://doi.org/10.1038/s41598-019-39528-0.

Kumar S, Majhi RK, Singh A, Mishra M, Tiwari A, Chawla S, Guha P, Satpati B, Mohapatra H, Goswami L, Goswami C. Carbohydrate-Coated Gold-Silver Nanoparticles for Efficient Elimination of Multidrug Resistant Bacteria and in vivo Wound Healing. ACS Appl Mater Interf. 2019;11(46):42998-43017. https://doi.org/10.1021/acsami.9b17086

Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomed. 2016;4(11):1889-97. https://doi.org/10.2147/IJN.S102488

Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822. https://doi.org/10.1039/b303808b

Rao Y, Inwati GK, Singh M. Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Fut Sci OA. 2017; 3(4):FSO239. https://doi.org/10.4155/fsoa-2017-0062

Moustafa NE, Alomari AA. Green synthesis and bactericidal activities of isotropic and anisotropic spherical gold nanoparticles produced using Peganum harmala L leaf and seed extracts. Biotechnol Appl Biochem. 2019; 66(4):664-72. https://doi.org/10.1002/bab.1782

Qais QFA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem Appl. 2019; 4649506:1-12. https://doi.org/10.1155/2019/4649506

Amerkhanova SK, Shlyapov RM, Afanas’ev DA, Uali AS. The optical and sorption properties of films of polyvinyl alcohol with silver nanoparticles. Plastiche Mas. 2012; 3:12-14.

Folorunso A, Akintelu S, Oyebamiji, AK, Ajayi S, Abiola B, Abdusalam I, Morakinyo A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruct Chem. 2019; 9:111-17. https://doi.org/10.1007/s40097-019-0301-1

Fakhri A, Tahami S, Naji M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J Photochem Photobiol B. 2017;169:21-26. https://doi.org/10.1016/j.jphotobiol.2017.02.014

Syed B, Karthik N, Bhat P, Bisht N, Prasad A, Satish S, Nagendra PMN. Phyto-biologic bimetallic nanoparticles bearing antibacterial activity against human pathogens. King Saud Uni Sci. 2019;31:798-803. https://doi.org/10.1016/j.jksus.2018.01.008

Bankura K, Maity D, Mollick MR, Mondal D, Bhowmick B, Roy I, Midya T, Sarkar J, Rana D, Acharya K, Chattopadhyay D. Antibacterial activity of Ag-Au alloy NPs and chemical sensor property of AuNPs synthesized by dextran. Carbohydr Polym. 2014; 107:151-57. https://doi.org/10.1016/j.carbpol.2014.02.047

Ahmed HB, Attia MA, El-Dars FMSE, Emam HE. Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures: (Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol. 2019;128:214-29. https://doi.org/10.1016/j.ijbiomac.2019.01.093

Sharma M, Monika, Thakur P, Saini RV, Kumar R, Enza Torino E. Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya. Sci Rep. 2020;10:10934. https://doi.org/10.1038/s41598-020-67673-4

Enrique MA, Guillermina FF, Ocampo-García BE, López-Téllez G, López-Ortega J, Rogel-Ayala DG, Sánchez-Padilla D. Antibacterial efficacy of gold and silver nanoparticles functionalized with the Ubiquicidin (29–41) antimicrobial peptide. J Nanomat Article. 2017; ID 5831959. https://doi.org/10.1155/2017/5831959

Alti D, Veeramohan Rao M, Rao DN, Maurya R, Kalangi SK. Gold-silver bimetallic nanoparticles reduced with herbal leaf extracts induce ROS-mediated death in both promastigote and amastigote stages of Leishmania donovani. ACS Omega. 2020; 5(26):16238-45. https://doi.org/10.1021/acsomega.0c02032

Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale. 2020;12:3731-49. https://doi.org/10.1039/C9NR10700B

Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, Quezada H, Olivares-Trejo JJ. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11(7):1265-76. https://doi.org/10.1039/c9mt00084d

Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(3):286-327. https://doi.org/10.1080/10590501.2015.1055161

Yang P, Pageni P, Rahman MA, Bam M, Zhu T, Chen YP, Nagarkatti M, Decho AW, Tang C. Gold nanoparticles with antibiotic-metallopolymers toward broad-spectrum antibacterial effects. Adv Health C Mater. 2019; 8(6):e1800854. https://doi.org/10.1002/adhm.201800854

Published

20-02-2022

Versions

How to Cite

1.
Pahal V, Kumar P, Kumar P, Kumar V. Phytofabrication of gold and bimetallic gold-silver nanoparticles using water extract of wheatgrass (Triticum aestivum), their characterization and comparative assessment of antibacterial potential. Plant Sci. Today [Internet]. 2022 Feb. 20 [cited 2024 Nov. 21];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1449

Issue

Section

Research Articles