Effect of Flame Treatment and Radiofrequency Electromagnetic Radiations on phenolic content in in vitro cultures of Ipomoea batatas
DOI:
https://doi.org/10.14719/pst.1469Keywords:
Callus culture, Flame treatment, Ipomoea batatas, Radio frequency electromagnetic radiationAbstract
In vitro grown callus cultures of Ipomoea batatas were exposed to flame treatment and electromagnetic radiations generated by mobile phone. The cultured tissues responded to the treatments as evidenced by the significant reduction of phenolic contents compared to controls. Even though the growth of the tissues was normal, there was a change in the phenolic content of the tissues. There exhibited not much significant variation among the treatments regarding the growth rate. The morphology and texture of the callus also remained the same. It has been concluded that like animal cells, plant cells also respond to non-ionizing radiations like electromagnetic radiation emitted by mobile phones.
Downloads
References
Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: an international perspective, Environ. Pollut. 2018; 242, 643e658. https://doi.org/10.1016/j.envpol.2018.07.019
Verschaeve L. Environmental impact of radiofrequency fields from mobile phone base stations. Critical Reviews in Environmental Science and Technology 2014; 44:1313-1369. https://doi.org/10.1080/10643389.2013.781935
Karger CP. Mobile phones and health: A literature overview. Z Med Phy. 2005; 15:73-85. https://doi.org/10.1078/0939-3889-00248
Kalafatakis F, Bekiaridis-Moschou D, Gkioka E, Tsolaki, M. Mobile phone use for 5 minutes can cause significant memory impairment in humans. Hell J Nucl Med. 2017; 20:146-154.
Sultangaliyeva I, Beisenova R, Tazitdinova R, Abzhalelov A, Khanturin M. The influence of electromagnetic radiation of cell phones on the behavior of animals. Veterinary world. 2020: 13:549–555. https://dx.doi.org/10.14202%2Fvetworld.2020.549-555
Sharma VP, Singh HP, Batish DR. Kohli RK. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Z Naturforsch C J Biosci. 2010; 65: 66-72. https://doi.org/10.1515/znc-2010-1-212
Vian A, Davies E, Gendraud M. Bonnet P. Plant responses to high frequency electromagnetic fields. Biomed Res Int. 2016; 2016: 1830262. https://doi.org/10.1155/2016/1830262
Abdul-Razzaq W. and Rana B., The effect of cell phone signal in the near-field region. Int. J. of Health Res. and Innov. 2018; 6:1-6
Kumar AA, Mishra P, Kumari K, Panigrahi KC. Environmental stress influencing plant development and flowering. Front Biosci. 202; 4:15-24. https://doi.org/10.2741/s333
Ahanger MA, Agarwal RM. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol. Biochem, 2017;115:449-460. https://doi.org/10.1016/j.plaphy.2017.04.017
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52:39. http://dx.doi.org/10.1186/s40659-019-0246-3
Boscaiu M, Sanchez M, Bautista I, Donat P. Lindon A, Llinares J, Llul C, Mayoral O, Vicente O. Phenolic compounds as stress markers in plants from Gypsum habitats, Bulletin UVASVM Horticulture 2010; 67:44-49
Lloyd G, McCown BH. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture, International Plant Propagators’ Society, 1980; 30:421-427
Sulaiman CT, Balachandran I. Total phenolics and total flavonoids in selected Indian medicinal plants, Indian J Pharm Sci. 2012;74:258-260. https://doi.org/10.4103/0250-474x.106069
Rotcharoen T, Khan-Ngem W Nitta S. The study of rice growing with the electromagnetic fi eld effect simulated from 300 kV switching substation. Asia-Pacific Conference on Environmental Electromagnetics 2003; 4:48-152. https://doi.org/10.1109/CEEM.2003.237814
Soja G, Kunsch B, Gerzabe DM, Reichenauer T, Soja AM, Ripper G, Bolhar-Nordenkampf R. Growth and yield of winter wheat (Triticum aestivum) and corn (Zea mays) near a high voltage transmission line. Bio electromagnetics 2003; 24:91-102. https://doi.org/10.1002/bem.10069
Borges BPS, Lima APPS, Lima-Brito A, Santana JRF, Conceição AA. Fire as a novel technique to stimulate adventitious shoots in the laboratory. Plant Cell Tiss Organ Cult. 2020;143:709–713
Valle JCD, Buide ML, Whittall JB, Valladares F, Narbona E. UV Radiation increases phenolic compound protection but decreases reproduction in Silene littorea. PLoS ONE 2020; 15:6. https://dx.doi.org/10.1371%2Fjournal.pone.0231611
Król A, Amarowicz R, Weidner S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress, Acta Physiol Plant 2014; 36:1491–1499. http://dx.doi.org/10.1007/s11738-014-1526-8
Kouzmanova M, Dimitrova M, Dragolova D, Atanasova G, Atanasov N. Alterations in enzyme activities in leaves after exposure of Plectranthus sp. plants to 900 MHZ electromagnetic field, Biotechnology & Biotechnological Equipment 2009; 23:611-615. https://doi.org/10.1080/13102818.2009.10818499
Downloads
Published
Versions
- 01-04-2022 (2)
- 14-02-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Urja Bag, S Narasimhan, S Bindu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).