Genetic Transformation of Arachis hypogaea Using Novel Genes Conferring Fungal Resistance-A Review
DOI:
https://doi.org/10.14719/pst.1504Keywords:
Fungus, Genetic engineering, TransformationAbstract
Peanut (Arachis hypogaea L.) or the common ‘peanut’ is a worldwide popular, affordable food containing high protein, calories, vitamins, and minerals. Several biotic and abiotic stresses are responsible for reaching the expected production of peanuts worldwide. Especially, the fungi are the major constraints that not only hamper the production but also that is deadly health hazardous for both human consumption and poultry-livestock. Approaches from various dimensions like cultural management, diseases free cultivar development, hybridization, tissue culture, and genetic transformations have been tried to overcome such challenges. This review epitomizes the total scenario from the plant physiological basis of fungal diseases to the peanut development approaches, which aimed to develop a concrete understanding of sustainable management of peanut production. Comparisons of Genetic Engineering methods such as Agrobacterium-mediated and direct gene gun (particle bombardment- mediated) with traditional hybridization have been compiled here, furthermore, candidate genes transformed to achieve fungus-resistance in peanuts have been listed up to provide an overview. Along with, the limitations of transformation attempts and the techniques for improvisation of transformation techniques have been discussed in sustainable peanut production. This study provides, comprehensive information on fungal-resistant peanut development so that, further research in this arena could be guided in an integrated way, which may serve for the thrust of sustainable improvisation in peanut cultivation.
Downloads
References
Otyama PI, Kulkarni R, Chamberlin K, Ozias-Akins P, Chu Y, Lincoln LM, MacDonald GE, Anglin NL, Dash S, Bertioli DJ, Fernández-Baca D, Graham MA, Cannon SB, Cannon EKS. Genotypic Characterization of the U.S. Peanut Core Collection. G3 (Bethesda). 2020;10(11):4013-4026. https://doi.org/10.1534/g3.120.401306.
Wright G. Peanuts. In: Wrigley G, editor. Encyclopedia of Grain Science. Elsevier; 2004. p. 438–44. https://doi.org/10.1016/B0-12-765490-9/00125-7.
Prasad PV, KakaniVG, Upadhyaya HD. Soils, Plant Growth And Crop Production. 2nd Ed, Vol II. Oxford, U.K.: In EOLSS Publishers; 2010.p.1-34.
Arya SS, Salve AR, Chauhan S. Peanuts As Functional Food: A Review. J Food Sci Technol. 2016;53(1):31–41. https://doi.org/10.1007/s13197-015-2007-9.
Senakoon W, Nuchadomrong S, Chiou RY-Y, Senawong G, Jogloy S, Songsri P, et al. Identification of Peanut Seed Prolamins With an Antifungal Role by 2D-GE and Drought Treatment. Biosci Biotechnol Biochem. 2015;79(11):1771–8. https://doi.org/10.1080/09168451.2015.1056508.
Pal KK, Dey R, Tilak KVBR. Fungal Diseases of Groundnut: Control and Future Challenges. In: Goyal A., Manoharachary C, editors. Future Challenges in Crop Protection Against Fungal Pathogens. Fungal Biology. Springer, New York;2014. p. 1–29. https://doi.org/10.1007/978-1-4939-1188-2_1.
Iquebal MA, Tomar RS, Parakhia M V., Singla D, Jaiswal S, Rathod VM, et al. Draft Whole Genome Sequence of Groundnut Stem Rot Fungus Athelia rolfsii Revealing Genetic Architect of its Pathogenicity and Virulence. Sci Rep. 2017;7:5299:1-10.. https://doi.org/10.1038/s41598-017-05478-8.
Olatinwo RO, Prabha T V., Paz JO, Hoogenboom G. Predicting Favorable Conditions for Early Leaf Spot of Peanut Using Output From the Weather Research and Forecasting (WRF) Model. Int J Biometeorol. 2012;56(2):259–68. https://doi.org/10.1007/s00484-011-0425-6.
Xu ML, Yang JG, Wu JX, Chi YC, Xie LH. First Report of Aspergillus niger Causing Root Rot of Peanut in China. Plant Dis. 2015;99(2):284–284. https://doi.org/10.1094/PDIS-05-14-0530-PDN.
Chu Y, Chee P, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P. Major QTLs for Resistance to Early and Late Leaf Spot Diseases Are Identified on Chromosomes 3 and 5 in Peanut (Arachis hypogaea). Front Plant Sci. 2019;10:883:1-13. https://doi.org/10.3389/fpls.2019.00883.
Sobolev V, Walk T, Arias R, Massa A, Lamb M. Inhibition of Aflatoxin Formation in Aspergillus Species by Peanut (Arachis hypogaea ) Seed Stilbenoids in the Course of Peanut–Fungus Interaction. J Agric Food Chem. 2019;67(22):6212–21. https://doi.org/10.1021/acs.jafc.9b01969.
Vargas Gil S, Haro R, Oddino C, Kearney M, Zuza M, Marinelli A, et al. Crop Management Practices in the Control of Peanut Diseases Caused by Soilborne Fungi. Crop Prot. 2008;27(1):1–9. https://doi.org/10.1016/j.cropro.2007.03.010.
Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides: An Overlooked Pesticide Class? Environ Sci Technol. 2019;53(7):3347–65. https://doi.org/10.1021/acs.est.8b04392.
Hahn M. The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi: Botrytis as a Case Study. J Chem Biol. 2014;7(4):133–41. https://doi.org/10.1007/s12154-014-0113-1.
Panth M, Hassler SC, Baysal-Gurel F. Methods for Management of Soilborne Diseases in Crop Production. Agriculture. 2020;10(1):16. https://doi.org/10.3390/agriculture10010016.
Vincelli P. Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. Sustainability. 2016;8(5):495. https://doi.org/10.3390/su8050495.
Rathnakumar AL, Singh R, Parmar DL, Misra JB. Groundnut: A Crop Profile and Compendium of Notified Varieties of India. 2013 [Cited 2021, September 1]. Directorate of Groundnut Research, Junagadh, Gujarat, India. 118p. Available from: https://krishi.icar.gov.in/jspui/handle/123456789/4453
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. Peg Biology: Deciphering the Molecular Regulations Involved During Peanut Peg Development. Front Plant Sci. 2019; 10:1289:1-17. https://doi.org/10.3389/fpls.2019.01289.
Ghewande MP, Desai S BM. Diagnosis and Management of Major Diseases of Groundnut. NRCG Bull. 2002;8–9.
Pande S, Bandyopadhyay R, Blümmel M, Narayana Rao J, Thomas D, Navi S. Disease Management Factors Influencing Yield and Quality of Sorghum And Groundnut Crop Residues. Field Crops Res. 2003;84(1–2):89–103. https://doi.org/10.1016/S0378-4290(03)00143-6.
Moradia AM, Khandar RR. Loss of Yield of Groundnut (Arachis hypogaea L.) Due to Dry Root Rot (Macrophomina phaseolina) and Their Management Under in vivo Condition. Int J Agric Sci. 2011;7(2):282–5.
Rani PU, Yasur J. Physiological Changes in Groundnut Plants Induced by Pathogenic Infection of Cercosporidium personatum deighton. Allelopath J. 2009;23(2):369–78.
Nutsugah SK, Abudulai M, Oti-Boateng C, Brandenburg RL, Jordan DL. Management of Leaf Spot Diseases of Peanut with Fungicides and Local Detergents in Ghana. Plant Pathol J. 2007; 6(3):248–53. https://doi.org/10.3923/ppj.2007.248.253.
Hollowell JE, Shew BB, Beute MK, Abad ZG. Occurrence of Pod Rot Pathogens in Peanuts Grown in North Carolina. Plant Disease. 1998;82(12):1345–9. https://doi.org/10.1094/PDIS.1998.82.12.1345.
Beute MK. Pythium diseases. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subhrahmanyan P, editors. Compendium of Peanut Diseases. 2nd ed. St. Paul, Minn, USA:APS Press;1997. p. 27–30.
Anco DJ, Hiers JB, Thomas JS. Improved Management Efficacy of Late Leaf Spot on Peanut Through Combined Application of Prothioconazole with Fluxapyroxad and Pyraclostrobin. Agronomy. 2020;10(2):298. https://doi.org/10.3390/agronomy10020298.
Subrahmanyam, P., McDonald D. Rust Disease of Groundnut. Information Bulletin, No. 13, ICRISAT, India. 1983.
Chaudhari S, Khare D, Patil SC, Sundravadana S, Variath MT, Sudini HK, et al. Genotype Environment Studies on Resistance to Late Leaf Spot and Rust in Genomic Selection Training Population of Peanut (Arachis hypogaea L.). Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01338.
Deepthi, K. C., & Reddy NE. Stem Rot Disease of Groundnut (Arachis Hypogaea L.) Induced by Sclerotium Rolfsii and its Management. Int J Life Sci Biotechnol Pharma Res. 2013; 2(3):26–38.
Butzler TM, Bailey J, Beute MK. Integrated Management of Sclerotinia Blight in Peanut: Utilizing Canopy Morphology, Mechanical Pruning, and Fungicide Timing. Plant Dis. 1998; 82(12):1312–8. https://doi.org/10.1094/PDIS.1998.82.12.1312.
Bera SK, Kasundra SV, Kamdar JH, BC A, Lal C, Thirumalasmy PP, Dash P, Maurya AK. Variable Response of Interspecific Breeding Lines of Groundnut to Sclerotium rolfsii Infection Under Field and Laboratory Conditions. Electron J Plant Breed. 2014;5(1):22–9.
Thiessen LD, Woodward JE. Diseases of Peanut Caused by Soilborne Pathogens in the Southwestern United States. ISRN Agron. 2012;2012:1–9. https://doi.org/10.5402/2012/517905.
Rushing BR, Selim MI. Aflatoxin B1: A Review on Metabolism, Toxicity, Occurrence in Food, Occupational Exposure, and Detoxification Methods. Food Chem Toxicol. 2019; 124:81–100. https://doi.org/10.1016/j.fct.2018.11.047.
Mohammed A, Chala A, Dejene M, Fininsa C, Hoisington DA, Sobolev VS, et al. Aspergillus and Aflatoxin in Groundnut (Arachis hypogaea L.) and Groundnut Cake in Eastern Ethiopia. Food Addit Contam Part B Surveill. 2016;9(4):290–8. https://doi.org/10.1080/19393210.2016.1216468.
Kachapulula PW, Akello J, Bandyopadhyay R, Cotty PJ. Aspergillus section Flavi Community Structure in Zambia Influences aflatoxin Contamination of Maize and Groundnut. Int J Food Microbiol. 2017;261:49–56. https://doi.org/10.1016/j.ijfoodmicro.2017.08.014.
Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, et al. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins (Basel). 2019;11(6):315. https://doi.org/10.3390/toxins11060315.
N’dede CB, Jolly CM, Vodouhe SD, Jolly PE. Economic Risks of Aflatoxin Contamination in Marketing of Peanut in Benin. Econ Res Int. 2012;2012:1–12. https://doi.org/10.1155/2012/230638.
Santra HK, Banerjee D. Fungal Endophytes: A Source for Biological Control Agents. In: Yadav A, Mishra S, Kour D, Yadav N, Kumar A, editors. Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Cham: Springer;2020. p. 181–216. https://doi.org/10.1007/978-3-030-48474-3_6.
Wallwork H. The Use of Host Plant Resistance in Disease Control. In: Walters D, editor. Disease Control in Crops: Biological and Environmentally-Friendly Approaches. Oxford, UK: Wiley-Blackwell;2009. p. 122–41. https://doi.org/10.1002/9781444312157.ch6.
Gorbet DW, Kucharek TA, Shokes FM, Brenneman TB. Field Evaluations of Peanut Germplasm for Resistance to Stem Rot Caused by Sclerotium rolfsii. Peanut Sci. 2004; 31(2):91–5. https://doi.org/10.3146/pnut.31.2.0006.
Bennett RS. Growth Chamber Assay for Evaluating Resistance to Athelia rolfsii. Peanut Sci. 2020;47(1):25–32. https://doi.org/10.3146/PS19-12.1.
Morton BR, Tillman BL, Gorbet DW, Boote KJ. Impact of Seed Storage Environment on Field Emergence of Peanut (Arachis hypogaea L.) Cultivars. Peanut Sci. 2008;35(2):108–15. https://doi.org/10.3146/PS07-111.1.
Brenneman TB. Rhizoctonia diseases. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subhrahmanyan P, editors. Compendium of Peanut Diseases. 2nd ed. St. Paul, Minn, USA:APS Press;1997. p. 30–1.
Woodward JE, Brenneman TB, Kemerait Jr RC, Culbreath AK, Clark JR. Sclerotinia Blight in Georgia and Evidence for Resistance to Sclerotinia sclerotiorum in Runner Peanuts. Plant Heal Prog. 2006;7:1–19. https://doi.org/10.1094/PHP-2006-0531-01-RS.
Partridge-Telenko DE, Hu J, Livingstone DM, Shew BB, Phipps PM, Grabau EA. Sclerotinia Blight Resistance in Virginia-Type Peanut Transformed with a Barley Oxalate Oxidase Gene. Phytopathology®. 2011;101(7):786–93. https://doi.org/10.1094/PHYTO-10-10-0266.
Woodward JE, Baughman TA, Baring MR, Simpson CE. Comparison of Three High-Oleic Peanut Cultivars under Varying Field Conditions in the Southwestern United States. Peanut Sci. 2015;42(1):11–7. https://doi.org/10.3146/0095-3679-42.1.11.
Dordas C. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agron Sustain Dev. 2008;28(1):33–46. https://doi.org/10.1051/agro:2007051.
Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, et al. Plant Growth Promotion in Cereal and Leguminous Agricultural Important Plants: From Microorganism Capacities to Crop Production. Microbiol Res. 2014;169(5–6):325–36. https://doi.org/10.1016/j.micres.2013.09.011.
Arif I, Batool M, Schenk PM. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020;38(12):1385–96. https://doi.org/10.1016/j.tibtech.2020.04.015.
Blanco NHM, Barbosa DFR, Graichen FAS. Antagonistic microorganisms and Nitrogen Fertilization in Control of Tomato Southern Blight. Arq Inst Biol (Sao Paulo). 2021;88. https://doi.org/10.1590/1808-1657000502019.
Erper, I., Turkkan, M., Karaca, G. H., &Kilic G. Evaluation of in Vitro Antifungal Activity of Potassium Bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp. African J Biotechnol. 2011;10(43):8605–12.
Grichar WJ, Besler BA, Melouk HA. Peanut (Arachis hypogaea) Response to Agricultural and Power Plant By-Product Calcium. Peanut Sci. 2004;31(2):95–101. https://doi.org/10.3146/pnut.31.2.0007.
Gilbert-López B, García-Reyes JF, Molina-Díaz A. Sample Treatment and Determination of Pesticide Residues in Fatty Vegetable Matrices: A review. Talanta. 2009;79(2):109–28. https://doi.org/10.1016/j.talanta.2009.04.022.
Subash, S. P., Chand, P., Pavithra, S., Balaji, S. J., & Pal S. Pesticide Use in Indian Agriculture: Trends, Market Structure and Policy Issues. Icar – National Institute Of Agricultural Economics And Policy Research, New Delhi; 2018.
Grichar WJ, Woodward JE. Fungicides and Application Timing for Control of Early Leafspot, Southern Blight, and Sclerotinia Blight of Peanut. Int J Agron. 2016;1–7. https://doi.org/10.1155/2016/1848723.
Augusto J, Brenneman TB, Culbreath AK, Sumner P. Night Spraying Peanut Fungicides I. Extended Fungicide Residual and Integrated Disease Management. Plant Dis. 2010;94(6):676–82. https://doi.org/10.1094/PDIS-94-6-0676.
Johnson RC, Cantonwine EG. Post-Infection Activities of Fungicides Against Cercospora arachidicola of Peanut (Arachis hypogaea). Pest Manag Sci. 2014;70(8):1202–6. https://doi.org/10.1002/ps.3671.
Yu D, Li J, Zhang Y, Wang H, Guo B, Zheng L. Enantioseletive Bioaccumulation of Tebuconazole in Earthworm Eisenia fetida. J Environ Sci. 2012;24(12):2198–204. https://doi.org/10.1016/S1001-0742(11)61053-X.
Dawoud M, Bundschuh M, Goedkoop W, McKie BG. Interactive Effects of an Insecticide and a Fungicide on Different Organism Groups and ecosystem functioning in a Stream Detrital Food Web. Aquatic Toxicology. 2017;186:215–21. https://doi.org/10.1016/j.aquatox.2017.03.008.
Cui N, Xu H, Yao S, He Y, Zhang H, Yu Y. Chiral Triazole Fungicide Tebuconazole: Enantioselective Bioaccumulation, Bioactivity, Acute Toxicity, and Dissipation in Soils. Environ Sci Pollut Res. 2018;25(25):25468–75. https://doi.org/10.1007/s11356-018-2587-9.
Wang T, Zhang H, Zhu H. CRISPR Technology is Revolutionizing the Improvement of Tomato and Other Fruit Crops. Hortic Res. 2019;6(1):77. https://doi.org/10.1038/s41438-019-0159-x.
Zhou J, Zhang J, Li F, Liu J. Triazole Fungicide Tebuconazole Disrupts Human Placental Trophoblast Cell Functions. J Hazard Mater. 2016;308:294–302. https://doi.org/10.1016/j.jhazmat.2016.01.055.
Pirozzi AVA, Stellavato A, La Gatta A, Lamberti M, Schiraldi C. Mancozeb, a Fungicide Routinely Used in agriculture, worsens nonalcoholic fatty liver disease in the Human Hepg2 Cell Model. Toxicol Lett. 2016;249:1–4. https://doi.org/10.1016/j.toxlet.2016.03.004.
Paro R, Tiboni GM, Buccione R, Rossi G, Cellini V, Canipari R, et al. The Fungicide Mancozeb Induces Toxic Effects on Mammalian Granulosa Cells. Toxicol Appl Pharmacol . 2012;260(2):155–61. https://doi.org/10.1016/j.taap.2012.02.005.
Walia A, Mehta P, Guleria S, Chauhan A, Shirkot CK. Impact of Fungicide Mancozeb at Different Application Rates on Soil Microbial Populations, Soil Biological Processes, and Enzyme Activities in Soil. Sci World J. 2014;2014:1–9. https://doi.org/10.1155/2014/702909.
Andersen E, Ali S, Byamukama E, Yen Y, Nepal M. Disease Resistance Mechanisms in Plants. Genes (Basel). 2018;9(7):339. https://doi.org/10.3390/genes9070339.
Kamle M, Kumar P, Patra JK, Bajpai VK. Current Perspectives on Genetically Modified Crops and Detection Methods. 3 Biotech. 2017;7(3):219. https://doi.org/10.1007/s13205-017-0809-3.
Araus JL, Serret MD, Lopes MS. Transgenic Solutions to Increase Yield and Stability in Wheat: Shining Hope or Flash in the Pan? J Exp Bot. 2019;70(5):1419–24. https://doi.org/10.1093/jxb/erz077.
Das P, Adak S, Lahiri Majumder A. Genetic Manipulation for Improved Nutritional Quality in Rice. Front Genet. 2020;11. https://doi.org/10.3389/fgene.2020.00776.
Yang, Kloos, Mora-Ramírez, Romeis, Brunner, Li, et al. Transgenic Winter Wheat Expressing the Sucrose Transporter HvSUT1 from Barley does not Affect Aphid Performance. Insects. 2019;10(11):388. https://doi.org/10.3390/insects10110388.
Yang X, Yang J, Wang Y, He H, Niu L, Guo D, et al. Enhanced Resistance to Sclerotinia Stem Rot in Transgenic Soybean That Overexpresses a Wheat Oxalate Oxidase. Transgenic Res. 2019;28(1):103–14. https://doi.org/10.1007/s11248-018-0106-x.
Hao G, Bakker MG, Kim H-S. Enhanced Resistance to Fusarium graminearum in Transgenic Arabidopsis Plants Expressing a Modified Plant Thionin. Phytopathology®. 2020; 110(5):1056–66. https://doi.org/10.1094/PHYTO-12-19-0447-R.
Wang J, Gao X, Dong J, Tian X, Wang J, Palta JA, et al. Over-Expression of the Heat-Responsive Wheat Gene TaHSP23.9 in Transgenic Arabidopsis Conferred Tolerance to Heat and Salt Stress. Front Plant Sci. 2020;11. https://doi.org/10.3389/fpls.2020.00243.
Dai X, Wang Y, Chen Y, Li H, Xu S, Yang T, et al. Overexpression of NtDOG1L-T Improves Heat Stress Tolerance by Modulation of Antioxidant Capability and Defense-, Heat-, and ABA-Related Gene Expression in Tobacco. Front Plant Sci. 2020 Oct 30;11:568489. https://doi.org/10.3389/fpls.2020.568489.
Song X, Li E, Song H, Du G, Li S, Zhu H, et al. Genome-Wide Identification and Characterization of Nonspecific Lipid Transfer Protein (nsLTP) genes in Arachis duranensis. Genomics. 2020;112(6):4332–41. https://doi.org/10.3389/fpls.2020.568489.
Guo X, Li J, Zhang L, Zhang Z, He P, Wang W, et al. Heterotrimeric G-protein ? Subunit (LeGPA1) Confers Cold Stress Tolerance to Processing Tomato Plants (Lycopersicon esculentum Mill). BMC Plant Biol. 2020;20(1):394. https://doi.org/10.1186/s12870-020-02615-w.
Zhou Y, Chen M, Guo J, Wang Y, Min D, Jiang Q, et al. Overexpression of Soybean DREB1 Enhances Drought Stress Tolerance of Transgenic Wheat in the Field. J Exp Bot. 2020; 71(6):1842–57. https://doi.org/10.1093/jxb/erz569.
Zhao T, Wu T, Pei T, Wang Z, Yang H, Jiang J, et al. Overexpression of SlGATA17 Promotes Drought Tolerance in Transgenic Tomato Plants by Enhancing Activation of the Phenylpropanoid Biosynthetic Pathway. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.634888.
Chenault, K.D., Melouk, H.A., Payton and ME. Effect of Anti-Fungal Transgene(S) on Agronomic Traits of Transgenic Peanut Lines Grown Under Field Conditions. Peanut Sci. 2006;33(1):12–19. https://doi.org/10.3146/0095-3679(2006)33[12:EOATOA]2.0.CO;2.
Jackson SA, Iwata A, Lee S, Schmutz J, Shoemaker R. Sequencing Crop Genomes: Approaches and Applications. New Phytol. 2011;191(4):915–25. https://doi.org/10.1111/j.1469-8137.2011.03804.x.
Chenault KD, Burns JA, Melouk HA, Payton ME. Hydrolase Activity in Transgenic Peanut. Peanut Sci. 2002;29(2):89–95. https://doi.org/10.3146/pnut.29.2.0003.
Krishna G, Singh BK, Kim E-K, Morya VK, Ramteke PW. Progress in Genetic Engineering of Peanut (Arachis hypogaea L.)-A review. Plant Biotechnol J. 2015;13(2):147–62. https://doi.org/10.1111/pbi.12339.
Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, et al. Regeneration of Transgenic Peanut Plants From Stably Transformed Embryogenic Callus. Plant Sci. 1993;93(1–2):185–94. https://doi.org/10.1016/0168-9452(93)90048-5.
Mallikarjuna G, Rao TSRB, Kirti PB. Genetic Engineering for Peanut Improvement: Current Status and Prospects. Plant Cell, Tissue Organ Cult. 2016;125(3):399–416. https://doi.org/10.1007/s11240-016-0966-9.
Pickova D, Ostry V, Malir F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins (Basel). 2021 Mar 3;13(3):186. Available from: https://www.mdpi.com/2072-6651/13/3/186
Kimanya ME, Routledge MN, Mpolya E, Ezekiel CN, Shirima CP, Gong YY. Estimating the Risk of Aflatoxin-Induced Liver Cancer in Tanzania Based on Biomarker Data. PLoS One. 2021;16(3): e0247281:1-11. https://doi.org/10.3390/toxins13030186.
Haque E, Peter AV, Jairath MS. Tackling aflatoxin in groundnut. The Hindu, Business Line. [Internet] 2018 Jan 24 [Cited 2021 Sep 1]. Available from: https://www.thehindubusinessline.com/markets/commodities/tackling-aflatoxin-in-groundnut/article6861407.ece.
Dawlatana M, Coker RD, Nagler MJ, Wild CP, Hassan MS, Blunden G. The Occurrence of Mycotoxins in Key Commodities in Bangladesh: Surveillance Results From 1993 to 1995. J Nat Toxins. 2002;11(4):379–86.
Ozias-Akins P, Yang H, Roberson E, Akasaka E, Lynch R. Genetic Engineering of Peanut for Reduction of Aflatoxin Contamination [Internet]. United States Department of Agriculture. Research, Education and Economic Information System; 2000 [Cited 2021 Sep 1]. Available from: https://portal.nifa.usda.gov/web/crisprojectpages/0410690-genetic-engineering-of-peanut-for-reduction-of-aflatoxin-contamination.html.
Niu C, Akasaka-Kennedy Y, Faustinelli P, Joshi M, Rajasekaran K, Yang H, et al. Antifungal Activity in Transgenic Peanut (Arachis hypogaea L.) Conferred by a Nonheme Chloroperoxidase Gene. Peanut Sci. 2009;36(2):126–32. https://doi.org/10.3146/PS08-020.1.
Sundaresha S, Manoj Kumar A, Rohini S, Math SA, Keshamma E, Chandrashekar SC, et al. Enhanced Protection Against Two Major Fungal Pathogens Of Groundnut, Cercospora arachidicola and Aspergillus flavus in Transgenic Groundnut Over-Expressing a tobacco ? 1–3 glucanase. Eur J Plant Pathol. 2010;126(4):497–508. https://doi.org/10.1007/s10658-009-9556-6.
Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, et al. Peanuts That Keep Aflatoxin At Bay: a Threshold That Matters. Plant Biotechnol J. 2018;16(5):1024–33. https://doi.org/10.1111/pbi.12846.
Arias RS, Dang PM, Sobolev VS. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem. J Vis Exp. 2015; 106:1-11. https://doi.org/10.3791/53398.
Jayaprakash A, Thanmalagan RR, Roy A, Arunachalam A, Lakshmi P. Strategies to Understand Aspergillus flavus Resistance Mechanism in Arachis hypogaea L. Current Plant Biol. 2019;20:100123:1-11. https://doi.org/10.1016/j.cpb.2019.100123.
Stahl EA, Bishop JG. Plant-Pathogen Arms Races at the Molecular Level. Curr Opin Plant Biol. 2000;3(4):299–304. https://doi.org/10.1016/S1369-5266(00)00083-2.
Chenault KD, Payton ME, Melouk HA. Greenhouse Testing of Transgenic Peanut for Resistance to Sclerotinia minor. Peanut Sci. 2003;30(2):116–20. https://doi.org/10.3146/pnut.30.2.0011.
Punja ZK, Zhang YY. Plant Chitinases and Their Roles in Resistance to Fungal Diseases. J Nematol. 1993;25(4):526–40.
Prasad K, Bhatnagar-Mathur P, Waliyar F, Sharma KK. Overexpression of a Chitinase Gene in Transgenic Peanut Confers Enhanced Resistance to Major Soil Borne and Foliar Fungal Pathogens. J Plant Biochem Biotechnol. 2013;22(2):222–33. https://doi.org/10.1007/s13562-012-0155-9.
Rohini V, Sankara Rao K. Transformation of peanut (Arachis hypogaea L.) with Tobacco Chitinase Gene: Variable Response of Transformants to Leaf Spot Disease. Plant Science. 2001;160(5):889–98. https://doi.org/10.1016/S0168-9452(00)00462-3.
Iqbal MM, Yusuf Z, Farhat N, Shaukat A, Javaid I, Asif MA, Omer R, Ali GM. Over Expression of Bacterial Chitinase Gene in Pakistani Peanut (Arachis hypogaea L.) Cultivar GOLDEN. Afr. J. Biotechnol. 2011;10(31):5838-5844. https://doi.org/10.5897/AJB11.681.
Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, et al. Over Expression of Rice chitinase Gene in Transgenic Peanut (Arachis hypogaea L.) Improves Resistance Against Leaf Spot. Mol Biotechnol. 2012;50(2):129–36. https://doi.org/10.1007/s12033-011-9426-2.
Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J-J, et al. Field Tolerance to Fungal Pathogens of Brassica napus Constitutively Expressing a Chimeric Chitinase Gene. Nat Biotechnol. 1996;14(5):643–6. https://doi.org/10.1038/nbt0596-643.
Van Leeuwen W, Ruttink T, Borst?Vrenssen AWM, van der Plas LHW, van der Krol AR. Characterization of Position?Induced Spatial and Temporal Regulation of Transgene Promoter Activity in Plants. J Exp Bot. 2001;52(358):949–59.https://doi.org/10.1093/jexbot/52.358.949.
Qiao LX, Ding X, Wang HC, Sui JM, Wang J-S. Characterization of the ?-1,3-Glucanase Gene in Peanut (Arachis hypogaea L.) by Cloning and Genetic Transformation. Genet Mol Res. 2014;13(1):1893–904.
Livingstone DM, Hampton JL, Phipps PM, Grabau EA. Enhancing Resistance to Sclerotinia minor in Peanut by Expressing a Barley Oxalate Oxidase Gene. Plant Physiol. 2005;137(4):1354–62. https://doi.org/10.1104/pp.104.057232.
Sinha M, Singh RP, Kushwaha GS, Iqbal N, Singh A, Kaushik S, et al. Current Overview of Allergens of Plant Pathogenesis Related Protein Families. Sci World J. 2014;2014:1–19. https://doi.org/10.1155/2014/543195.
Pusztahelyi T. Chitin and Chitin-Related Compounds in Plant–Fungal Interactions. Mycology. 2018; 9(3):189–201. https://doi.org/10.1080/21501203.2018.1473299.
Swathi Anuradha T, Divya K, Jami SK, Kirti PB. Transgenic Tobacco and Peanut Plants Expressing a Mustard Defensin Show Resistance to Fungal Pathogens. Plant Cell Rep. 2008; 27(11):1777–86. https://doi.org/10.1007/s00299-008-0596-8.
Hasan MM, Islam R, Hossain I, Shirin K. Biological Control of Leaf Spot of Groundnut. J Biosci Agric Res. 2014;1(2):66–78. https://doi.org/10.18801/jbar.010214.08.
Vasavirama K, Kirti PB. Increased Resistance to Late Leaf Spot Disease in Transgenic Peanut Using a Combination of PR Genes. Funct Integr Genomics. 2012;12(4):625–34. https://doi.org/10.1007/s10142-012-0298-8.
Kumar D, Kirti PB. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata. PLoS One. 2015;10(2):e0117559:1-29. https://doi.org/10.1371/journal.pone.0117559.
Kumar D, Kirti PB. Pathogen-induced SGT1 of Arachis diogoi Induces Cell Death and Enhanced Disease Resistance in Tobacco and Peanut. Plant Biotechnol J. 2015;13(1):73–84. https://doi.org/10.1111/pbi.12237.
Hassan M ul, Akram Z, Ali S, Ali GM, Zafar Y, Shah ZH, et al. Whisker-Mediated Transformation of Peanut with Chitinase Gene Enhances Resistance to Leaf Spot Disease. Crop Breed ApplBiotechnol. 2016;16(2):108–14. https://doi.org/10.1590/1984-70332016v16n2a17.
Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R. Expression of a Stilbene Synthase Gene in Nicotiana tabacum Results in Synthesis of the Phytoalexin Resveratrol. Plant Mol Biol. 1990;15(2):325–35. https://doi.org/10.1007/BF00036918.
Altpeter F, Springer NM, Bartley LE, Blechl A, Brutnell TP, Citovsky V, et al. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell. 2016;28(7):1510-1520 https://doi.org/10.1105/tpc.16.00196.
Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, et al. Robust Genetic Transformation System to Obtain Non-chimeric Transgenic Chickpea. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00524.
Arencibia AD, D’Afonseca V, Chakravarthi M, Castiglione S. Learning from transgenics: Advanced Gene Editing Technologies Should Also Bridge the Gap With Traditional Genetic Selection. Electron J Biotechnol. 2019;41:22–9. https://doi.org/10.1016/j.ejbt.2019.06.001.
Prasad, K and Bhatnagar-Mathur, P and Narasu, M L and Waliyar, F and Sharma KK. Transgenic Approaches for Improving Fungal Disease Resistance in Groundnut. Technol Spectr. 2011;5(1):1–10.
McCabe DE, Swain WF, Martinell BJ, Christou P. Stable Transformation of Soybean (Glycine max) by Particle Acceleration. Nat Biotechnol. 1988; 6(8):923–6. https://doi.org/10.1038/nbt0888-923.
Somers DA, Samac DA, Olhoft PM. Recent Advances in Legume Transformation. Plant Physiol. 2003;131(3):892–9. https://doi.org/10.1104/pp.102.017681.
Teixeira da Silva JA, Nezami-Alanagh E, Barreal ME, Kher MM, Wicaksono A, Gulyás A, et al. Shoot Tip Necrosis of in vitro Plant Cultures: a Reappraisal of Possible Causes and Solutions. Planta. 2020;252(3):47. https://doi.org/10.1007/s00425-020-03449-4.
Perl A, Lotan O, Abu-Abied M, Holland D. Establishment of an Agrobacterium-Mediated Transformation System for Grape (Vitis vinifera L.): The role of Antioxidants During Grape–Agrobacterium Interactions. Nat Biotechnol. 1996;14(5):624–8. https://doi.org/10.1038/nbt0596-624.
Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL, Perez M, Selman-Housein G. Genetic Transformation of Sugarcane by Agrobacterium tumefaciens Using Antioxidant Compounds. Biotechnol Apl. 1997;14(3):169–74.
Enríquez-Obregón GA, Prieto-Samsónov DL, Gustavo A, Pérez M, Selman-Housein G, Vázquez-Padrón RI. Agrobacterium-Mediated Japonica Rice Transformation: a Procedure Assisted by an Antinecrotic Treatment. Plant Cell Tissue Organ Cult. 1999;59:159–169. https://doi.org/10.1023/A:1006307527449.
Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, et al. Transgenic Chickpea Seeds Expressing High Levels of a Bean -Amylase Inhibitor. Mol Breed. 2004;14(1):73–82. https://doi.org/10.1023/B:MOLB.0000037996.01494.12.
CelikkolAkcay U, Mahmoudian M, Kamci H, Yucel M, Oktem HA. Agrobacterium tumefaciens-Mediated Genetic Transformation of A Recalcitrant Grain Legume, Lentil (Lens culinaris Medik). Plant Cell Rep. 2009;28(3):407–17. https://doi.org/10.1007/s00299-008-0652-4.
Prasad K, Pooja Bhatnagar-mathur, Narasu ML, Farid WaliyarI KKS. Transgenic Approaches for Improving Fungal Disease Resistance in Groundnut. Technol Spectr. 2011;5(1):1–10.
Schürholz A-K, López-Salmerón V, Li Z, Forner J, Wenzl C, Gaillochet C, et al. A Comprehensive Toolkit for Inducible, Cell Type-Specific Gene Expression in Arabidopsis. Plant Physiol. 2018;178(1):40–53. https://doi.org/10.1104/pp.18.00463.
Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG. Design and Construction of a Versatile System for the Expression of Foreign Genes in Plants. Gene. 1987;61(1):1–11. https://doi.org/10.1016/0378-1119(87)90359-3.
Garbarino JE, Belknap WR. Isolation of a Ubiquitin-Ribosomal Protein Gene (ubi3) from Potato and Expression of its Promoter in Transgenic Plants. Plant Mol Biol. 1994;24(1):119–27. https://doi.org/10.1007/BF00040579.
Oyelakin OO, Opabode JT, Raji AA, Ingelbrecht IL. A Cassava vein mosaic virus promoter cassette induces high and stable gene expression in clonally propagated transgenic cassava (Manihot esculenta Crantz). S Afr J Bot. 2015. ;97:184-90. https://doi.org/10.1016/j.sajb.2014.11.011.
Sunilkumar G, Connell JP, Smith CW, Reddy AS, Rathore KS. Cotton Alpha-Globulin Promoter: Isolation and Functional Characterization in Transgenic Cotton, Arabidopsis, and Tobacco. Transgenic Res. 2002;11(4):347–59. https://doi.org/10.1023/A:1016322428517.
Skadsen RW, Sathish P, Federico ML, Abebe T, Fu J, Kaeppler HF. Cloning of the Promoter for a Novel Barley Gene, Lem1, and its Organ-Specific Promotion of Gfp Expression in Lemma and Palea. Plant Molecular Biology. 2002;49(5):545–55. https://doi.org/10.1023/A:1015509400123.
Yuan C, Li C, Yan C, Zhao X, Wang J, Sun Q, et al. Isolation and Characterization of a Novel Seed-Specific Promoter from Peanut (Arachis hypogaea L.). Mol Biol Rep. 2019;46(3):3183–91. https://doi.org/10.1007/s11033-019-04775-x.
Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, et al. Seed-Specific Expression of AtLEC1 Increased Oil Content and Altered Fatty Acid Composition in Seeds of Peanut (Arachis hypogaea L.). Front Plant Sci. 2018;9:260. https://doi.org/10.3389/fpls.2018.00260.
Tamayo MC, Rufat M, Bravo JM, San Segundo B. Accumulation of a Maize Proteinase Inhibitor in Response to Wounding and Insect Feeding, and Characterization of its Activity Toward Digestive Proteinases of Spodoptera littoralis Larvae. Planta. 2000;211(1):62–71. https://doi.org/10.1007/s004250000258.
Yevtushenko DP, Sidorov VA, Romero R, Kay WW, Misra S. Wound-Inducible Promoter from Poplar is Responsive to Fungal Infection in Transgenic Potato. Plant Sci. 2004; 167(4):715–24. https://doi.org/10.1016/j.plantsci.2004.04.023.
Low LY, Yang SK, Andrew Kok DX, Ong-Abdullah J, Tan NP, Lai KS. Transgenic Plants: Gene Constructs, Vector and Transformation Method. In: Çelik Ö, editor. New Visions in Plant Science. London: Intech Open; 2018. p. 41-61. https://doi.org/10.5772/intechopen.79369.
Gupta D, Dey N, Leelavathi S, Ranjan R. Development of Efficient Synthetic Promoters Derived from Pararetrovirus Suitable for Translational Research. Planta. 2021;253(2):42. https://doi.org/10.1007/s00425-021-03565-9.
Punja ZK. Genetic engineering of plants to enhance resistance to fungal pathogens -A Review of Progress and Future Prospects. Can J Plant Pathol. 2001;23(3):216–35. https://doi.org/10.1080/07060660109506935.
Guo M, Ye J, Gao D, Xu N, Yang J. Agrobacterium-Mediated Horizontal Gene Transfer: Mechanism, Biotechnological Application, Potential Risk And Forestalling Strategy. Biotechnol Adv. 2019;37(1):259–70. https://doi.org/10.1016/j.biotechadv.2018.12.008.
Nonaka S, Someya T, Kadota Y, Nakamura K, Ezura H. Super-Agrobacterium ver. 4: Improving the Transformation Frequencies and Genetic Engineering Possibilities for Crop Plants. Front Plant Sci. 2019;10:1204:1-12. https://doi.org/10.3389/fpls.2019.01204.
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, et al. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (Arachis hypogaea L.) and Maize (Zea mays L.). Front Microbiol. 2020;11:227:1-22. https://doi.org/10.3389/fmicb.2020.00227.
Xi J, Patel M, Dong S, Que Q, Qu R. Acetosyringone Treatment Duration Affects Large T-DNA Molecule Transfer to Rice Callus. BMC Biotechnol. 2018;18(1):48. https://doi.org/10.1186/s12896-018-0459-5.
Marka R, Nanna RS. Optimization of factors affecting Agrobacterium-mediated genetic transformation in groundnut (Arachis hypogaea L.). Adv Plants Agric Res. 2018;8(3):275?282. DOI: 10.15406/apar.2018.08.00327
Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal. Munderloh UG, editor. PLoS One. 2015;10(4):e0124693:1-23. https://doi.org/10.1371/journal.pone.0124693.
Matheka J, Tripathi JN, Merga I, Gebre E, Tripathi L. A Simple and Rapid Protocol for the Genetic Transformation of Ensete ventricosum. Plant Methods. 2019;15(1):130. https://doi.org/10.1186/s13007-019-0512-y.
Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, et al. Advances in Maize Transformation Technologies and Development of Transgenic Maize. Front Plant Sci. 2017;7:1949 :1-12 https://doi.org/10.3389/fpls.2016.01949.
Khan MS, Mustafa G, Joyia FA. Technical Advances in Chloroplast Biotechnology. In: Khan MS, Malik KA, editors. Transgenic Crops - Emerging Trends and Future Perspectives. London: Intech Open; 2019. p.1-13. https://doi.org/10.5772/intechopen.81240.
Mustafa G, Khan MS. Transmission of Engineered Plastids in Sugarcane, a C4 Monocotyledonous Plant, Reveals that Sorting of Preprogrammed Progenitor Cells Produce Heteroplasmy. Plants. 2020;10(1):26. https://doi.org/10.3390/plants10010026.
Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, et al. Transcriptome Profiles Reveal Gene Regulation of Peanut (Arachis hypogaea L.) nodulation. Sci Rep. 2017;7(1):40066:1-12. https://doi.org/10.1038/srep40066.
Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, et al. High?density Genetic Map Using Whole?Genome Resequencing for Fine Mapping and Candidate Gene Discovery for Disease Resistance in Peanut. Plant Biotechnol J. 2018;16(11):1954–67. https://doi.org/10.1111/pbi.12930.
Gong L, Han S, Yuan M, Ma X, Hagan A, He G. Transcriptomic Analyses Reveal the Expression and Regulation of Genes Associated with Resistance to Early Leaf Spot in Peanut. BMC Res Notes. 2020;13(1):381. https://doi.org/10.1186/s13104-020-05225-9.
Payton P, Kottapalli K, Rowland D, Faircloth W, Guo B, Burow M, et al. Gene Expression Profiling in Peanut Using High Density Oligonucleotide Microarrays. BMC Genomics. 2009; 10(1):265. https://doi.org/10.1186/1471-2164-10-265.
Feng S, Wang X, Zhang X, Dang PM, Holbrook CC, Culbreath AK, et al. Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application. Comp Funct Genomics. 2012;2012:1–9. https://doi.org/10.1155/2012/373768.
Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, et al. Genomic Tools in Groundnut Breeding Program: Status and Perspectives. Front Plant Sci. 2016;7:289:1-15. https://doi.org/10.3389/fpls.2016.00289.
Lv Y, Zhang X, Luo L, Yang H, Li P, Zhang K, et al. Characterization of Glycerol-3-Phosphate Acyltransferase 9 (AhGPAT9) Genes, their Allelic Polymorphism and Association with Oil Content in Peanut (Arachis hypogaea L.). Sci Rep. 2020;10(1):14648:1-15. https://doi.org/10.1038/s41598-020-71578-7.
Noblie PL. Identification and Characterization of Peanut (Arachis hypogaea L.) EST’s Regulated During Interaction with Cercosporidium personatum (Berk. and Curt.): XIV International Plant and Animal Genome Conference, San Diego, California, USA; 2006 Jan 14-15. p. 680.
Rathod V, Hamid R, Tomar RS, Padhiyar S, Kheni J, Thirumalaisamy P, et al. Peanut (Arachis hypogaea) Transcriptome Revealed the Molecular Interactions of the Defense Mechanism in Response to Early Leaf Spot Fungi (Cercospora arachidicola). Plant Gene. 2020;23:100243:1-12. https://doi.org/10.1016/j.plgene.2020.100243.
Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, et al. Unraveling the Mechanisms of Resistance to Sclerotium rolfsii in Peanut (Arachis hypogaea L.) Using Comparative RNA-Seq Analysis of Resistant and Susceptible Genotypes. Zhang Z, editor. PLoS One. 2020;15(8): e0236823:1-20. https://doi.org/10.1371/journal.pone.0236823.
Jogi A, Kerry JW, Brenneman TB, Leebens-Mack JH, Gold SE. Identification of Genes Differentially Expressed During Early Interactions Between the Stem Rot Fungus (Sclerotium rolfsii) and Peanut (Arachis hypogaea) Cultivars with Increasing Disease Resistance Levels. Microbiol Res. 2016;184:1–12. https://doi.org/10.1016/j.micres.2015.11.003.
Yu B, Huai D, Huang L, Kang Y, Ren X, Chen Y, et al. Identification of Genomic Regions and Diagnostic Markers for Resistance to Aflatoxin Contamination in Peanut (Arachis hypogaea L.). BMC Genet. 2019;20(1):32. https://doi.org/10.1186/s12863-019-0734-z.
Hao K, Wang F, Nong X, McNeill MR, Liu S, Wang G, et al. Response of Peanut Arachis hypogaea Roots to the presence of beneficial and pathogenic fungi by Transcriptome Analysis. Sci Rep. 2017;7(1):964. https://doi.org/10.1038/s41598-017-01029-3.
Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, et al. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection. Front Plant Sci. 2018;9:83:1-10. https://doi.org/10.3389/fpls.2018.00083.
Kumar J, Sen Gupta D, Baum M, Varshney RK, Kumar S. Genomics?Assisted Lentil Breeding: Current Status and Future Strategies. Legum Sci. 2021;3:e71:1-20. https://doi.org/10.1002/leg3.71.
Cui R, Clevenger J, Chu Y, Brenneman T, Isleib TG, Holbrook CC, et al. Quantitative Trait Loci Sequencing–Derived Molecular Markers for Selection Of Stem Rot Resistance in Peanut. Crop Sci. 2020;60(4):2008–18. https://doi.org/10.1002/csc2.20047.
Moradi A, El-Shetehy M, Gamir J, Austerlitz T, Dahlin P, Wieczorek K, et al. Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. Front Plant Sci. 2021;12:657451:1-13. https://doi.org/10.3389/fpls.2021.657451.
Chandrasekaran G, Lee YC, Park H, Wu Y, Shin HJ. Antibacterial and Antifungal Activities of Lectin Extracted from Fruiting Bodies of the Korean Cauliflower Medicinal Mushroom, Sparassis latifolia (Agaricomycetes). Int J Med Mushrooms. 2016;18(4):291–9. https://doi.org/10.1615/IntJMedMushrooms.v18.i4.20.
Chen ZY, Brown RL, Guo BZ, Menkir A, Cleveland TE. Identifying Aflatoxin Resistance-Related Proteins/Genes through Proteomics and RNAi Gene Silencing1. Peanut Sci. 2009;36(1):35–41. https://doi.org/10.3146/AT07-005.1.
Halder M, Jha S. Enhanced Trans-Resveratrol Production in Genetically Transformed root Cultures of Peanut (Arachis hypogaea L.). Plant Cell, Tissue Organ Cult. 2016;124(3):555–72. https://doi.org/10.1007/s11240-015-0914-0.
Power IL, Faustinelli PC, Orner VA, Sobolev VS, Arias RS. Analysis of small RNA Populations Generated in Peanut Leaves After Exogenous Application of dsRNA and dsDNA Targeting Aflatoxin Synthesis Genes. Sci Rep. 2020;10(1):13820:1-12. https://doi.org/10.1038/s41598-020-70618-6.
Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance. Front Plant Sci. 2020;11:476:1-11. https://doi.org/10.3389/fpls.2020.00476.
Forster H, Shuai B. Exogenous siRNAs Against Chitin Synthase Gene Suppress the Growth of the Pathogenic Fungus Macrophomina phaseolina. Mycologia. 2020;112(4):699–710. https://doi.org/10.1080/00275514.2020.1753467.
Nerva L, Sandrini M, Gambino G, Chitarra W. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules. 2020;10(2):200. https://doi.org/10.3390/biom10020200.
McLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, de Kievit T, et al. Identification and Application of Exogenous dsRNA Confers Plant Protection Against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep. 2018;8(1):7320:1-14. https://doi.org/10.1038/s41598-018-25434-4.
Song X-S, Gu K-X, Duan X-X, Xiao X-M, Hou Y-P, Duan Y-B, et al. Secondary Amplification of siRNA Machinery Limits the Application of Spray-Induced Gene Silencing. Mol Plant Pathol. 2018;19(12):2543–60. https://doi.org/10.1111/mpp.12728.
Cooper B, Campbell KB. Protection Against Common Bean Rust Conferred by a Gene-Silencing Method. Phytopathology. 2017;107(8):920–7. https://doi.org/10.1094/PHYTO-03-17-0095-R.
Jahan SN, Asman AKM, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. Plant-Mediated Gene Silencing Restricts Growth of the Potato Late Blight Pathogen Phytophthora infestans. J Exp Bot. 2015;66(9):2785–94. https://doi.org/10.1093/jxb/erv094.
Downloads
Published
Versions
- 01-04-2022 (2)
- 06-03-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Shahana Chowdhury, Anamika Datta, Manzur-E-Mohsina Ferdous, DWAIPAYAN SINHA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).