Biochemical and nutritional characteristics of some commercial banana (Musa spp.) cultivars of Kerala
DOI:
https://doi.org/10.14719/pst.1733Keywords:
Genomic group, Cultivars, Biochemical characterization, Nutritional characterizationAbstract
Biochemical and nutritional traits of 6 banana (Musa spp.) cultivars commercially cultivated in Kerala, belonging to different genomic groups viz. Pisang Lilin (AA), Grand Naine (ABB), Nendran (AAB), Karpooravalli (ABB), Njalipoovan (AB) and Yangambi (KM-5) (AAA) were evaluated. Biochemical and nutritional characters on variables such as titratable acidity (%), total soluble solids (oBrix) (TSS), total protein (g), total carbohydrates (g), total fat (%), total ash (%), crude fibre (%), vitamin C (mg), calcium (mg), potassium (mg), total phenols (mg) and total carotenoid (µg) content were laid out in a completely randomized design and subjected to one way ANOVA to determine the significance (p=.05). The cultivar Nendran (AAB) exhibited desirable biochemical and nutritional traits, particularly for titratable acidity (0.34%), TSS (23.90oB), total carbohydrates (37.51g/100g), total ash (14.89%) and crude fibre (0.90%) content. Yangambi (KM-5) (AAA) exhibited the highest values for major minerals of banana, especially calcium (168.90 mg/100g) and potassium (406.60 mg/100g). The current study reveals biochemical and nutritional variation among banana cultivars from different genomic groups, with similarities and differences overlapping even among banana cultivars from the same genomic group.
Downloads
References
Kerala Agricultural University. Banana Compendium. Kerala Agricultural University, Thrissur. 1996; 160p.
Heslop-Harrison JS, Shwarcher T. Domestication, genomics and the future for banana. Ann Bot. 2007;100:1073-84. http://doi:10.1093/aob/mcm191
Lalrinfela P, Arom AD, Thangjam R. Genome classification of Musa cultivars of Northeast India as revealed by ITS and IRAP markers. Appl Biochem Biotechnol. 2014;172:3939-48. http://doi.org/10.1007/s12010-014-0827-0
Simmonds NW, Shepherd K. The taxonomy and origins of the cultivated bananas. J Linn Soc London Bot. 1955;55(359):302-12. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x
Ningsih R, Megia R. Folic acid content and fruit characteristics of five Indonesia dessert banana cultivars. Biodeversitas. 2019; 20(1):144-51. http://doi.org/10.13057/biodiv/d200117
Hazarika BN, Sankaran M, Menon R, Sudha R, Prakash J, Suresh Kumar P et al. Improvement of varietal wealth. In: Ghosh. SN. (editor), Tropical and subtropical fruit improvement (1st ed.). Jaya Publishing House. New Delhi; 2014. p. 71-134.
GOK [Government of Kerala]. Agriculture Statistics. Area and production of crops 2018-2019. Department of Economics and Statistics, Government of Kerala. 2020. p. 2-12.
Reni M. Evaluation of selected banana (Musa spp.) cultivars grown in Kerala for post harvest attributes. PhD (Hortic.) Thesis. Thrissur (India): Kerala Agricultural University, Thrissur. 2015.
Government of India. Post harvest profile of banana. Ministry of Agriculture. 2015; 90p. http://agmarkenet.gov.in
TANUVASU [Tamil Nadu Agricultural University]. Expert system for Banana. Tamil Nadu Agricultural University, Chennai, Tamil Nadu. [cited 31 August 2021]. Available from: http://www.agritech.tnau.ac.in/expert_system/banana/season&variety.html
Menon R, Cherian AK, Patil, P. An overview of genetic resources of banana resistant to Sigota leaf spots in Kerala, India. Acta Hortic. 2016; 1114:161-70. http://doi.org/10.17660/ActaHortic.2016.1114.23
KAU [Kerala Agricultural University]. Packages of Practices and Recommendations: Crops (15th ed.). Kerala Agricultural University, Thrissur. 2016; 392p.
Ranganna S. Handbook of analysis and quality control for fruits and vegetables products (2nd ed.). McGraw Hill Education., New Delhi; 2017. p. 1112.
Sadasivam S, Manickam A. Biochemical Methods (3rd ed.). New Age International Publishers; 2008; p. 203-04.
Mohapatra D, Mishra S, Sutar N. Banana and its by product utilization: an overview. J Sci Ind Res. 2010;69:323-29. http://nopr.niscair.res.in/handle/123456789/8581
Siji S, Nandini PV. Chemical and nutrient composition of selected banana cultivars of Kerala. Int J Adv Eng Manag Sci. 2017; 3(4):401-04. https://dx.doi.org/10.24001/ijaems.3.4.21
Onyango M, Karamura D, Keeley S, Manshard R, Haymer D. Morphological characterization of East African ABB and AA dessert bananas (Musa spp.). Acta Hortic. 2011;897:95-105. http://doi.org/10.17660/ActaHortic.2011.897.9
Oyeyinka BO, Afolayan AJ. Comparative evaluation of the nutritive, mineral and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) fruit compartments. Plants. 2019;8 (12):598. https://doi.org/10.3390/plants8120598
Deshmukh MH, Pai SR, Nimbalkar MS, Patil RP. Biochemical characterization of banana cultivars from southern India. Int J Fruit Sci. 2009; 9:305-22. http://doi.org/10.1080/1553860903241336
Ashokkumar K, Elayabalan S, Shobana VG, Savikumar P, Pandiyan M. Nutritional value of cultivars on banana (Musa spp.) and its future prospects: a review. Curr Adv Agric Sci. 2018;10(2):73-77. http://doi.org/10.5958/2394-4471.2018.00013.8
Abobaker A, Aboubaker A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020; 72:1517-28. https://doi.org/10.1007/s43440-020-00176-1
Fogain R, Gowen SR. “Yangambi km5” (Musa AAA, Ibota subgroup): a possible source of resistance to Radopholus similis and Pratylenchus goodeyi. Fundam Appl Nematol. 1998; 21(1):75-80.
Emaga TH, Andrianaivo RH, Wathelet B, Tchango TJ, Paquot M. Effects of the stage of maturation and cultivars on the chemical composition of banana and plantain peels. Food Chem. 2007;103:590-600. https://doi.org/1016/j.foodchem.2006.09.006
Narayana CK, Jeyabaskaran KJ, Mustaffa MM. Chemical and mineral composition of four cultivars of banana (Musa sp.) belonging to different genomic groups grown in India. Int J Curr Microbiol Appl Sci. 2017; 6(9): 2862-67. https://doi.org/10.20546/ijcmas.2017.609.351
Devarajan R, Jayaraman JK, Somasundaram SM, Ragupathy S, Raman P, Sathiamoorthy K, Subbaraya U. Genetic diversity in fresh fruit pulp mineral profile of 100 Indian Musa accessions. Food Chem. 2021;361:130080. http://doi.org/10.1016/j.foodchem.2021.130080
Sulaiman SF, Yusoff NAM, Eldeen IM, Seow EM, Sajak AAB, Supriatno, Ooi KL. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa spp.) J Food Compos Anal. 2011; 24:1-10. http://doi.org/10.1016/j.jfca.2010.04.005
Hapsari L, Lestari DA. Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita J Agric Sci. 2016;38(3):303-11. http://dx.doi.org/10.17503/agrivita.v38i3.696
Elayaban S, Subramaniam S, Shobana VG, Ashok Kumar K. An overview of phytochemical composition of banana. Indian J Nat Sci. 2017;7(42):12404-19.
Kookal SK, Thimmaiah A. Nutritional composition of staple food bananas of three cultivars in India. Am J Plant Sci. 2018; 9:2480-93. https://doi.org/10.4236/ajps.2018.912179
Suresh Kumar P, Saravanan A, Sheeba N, Uma S. Structural, functional characterization and physicochemical properties of green banana flour from dessert and plantain bananas (Musa spp.).Food Sci Technol. 2019;116:108524. https://doi.org/10.1016/j.lwt.2019.108524
Borges CV, Amorim VBO, Ramlov F, Ledo CA, Donato M, Maraschin M, Amorim EP. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars. Food Chem. 2014;145:496-504. https://doi.org/10.1016/jfoodchem.2013.08.041
Aurore G, Parfait B, Fahrasmane L. Bananas, raw materials for making processed food products. Trends Food Sci Technol. 2009;20(2):78-91. http://doi.org/10.1016/j.tifs.2008.10.003
Baskar R, Shrisakthi S, Sathyapriya B, Shyampriya R, Nithya R, Poongodi P. Antioxidant potential of peel extracts of banana cultivars (Musa sapientum). Food Nutr Sci. 2011; 2:1128-33. http://doi.org/10.4236/fns.2011.210151
Awasthi S, Awasthi A. Role of vitamin a in child health and nutrition. Clin Epidemiology Glob Health. 2020;8(4):1039-42. http://doi.org/10.1016/j.cegh.2020.03.016
Amah D, Bilijon A, Maziya-Dixon B, Labuschagne M, Swennen R. Effects of in vitro polyploidization on agronomic characters and fruit carotenoid content; implications for banana genomic improvement. Front Plant Sci. 2019; 10:1450. https://doi.org/10.3389/fpls.2019.01450
Downloads
Published
Versions
- 01-07-2022 (2)
- 30-05-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Malikongwa Thatayaone, Gomez Saji, Joseph Meagle , Netravati, Bintu Kuruvila
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).