Multifarious pigment producing fungi of Western Ghats and their potential

Authors

DOI:

https://doi.org/10.14719/pst.1759

Keywords:

Western Ghats, Fungi, Pigments, Endophyte, Anticancer, Natural colorant

Abstract

Concerns about the negative impacts of synthetic colorants on both consumers and the environment have sparked a surge of interest in natural colorants. This has boosted the global demand for natural colorants in the food, cosmetics and textile industries. Pigments and colorants derived from plants and microorganisms are currently the principal sources used by modern industry. When compared to the hazardous effects of synthetic dyes on human health, natural colors are quickly degradable and have no negative consequences. In fact, fungal pigments have multidimensional bioactivity spectra too. Western Ghats, a biodiversity hotspot has a lot of unique ecological niches known to harbor potential endophytic pigment-producing fungi having enumerable industrial and medical applications. Most of the fungi have coevolved with the plants in a geographical niche and hence the endophytic associations can be thought to bring about many mutually beneficial traits. The current review aims to highlight the potential of fungal pigments found in the Western ghats of India depicting various methods of isolation and screening, pigment extraction and uses. There is an urgent need for bioprospecting for the identification and characterization of extremophilic endophytic fungi to meet industry demands and attain sustainability and balance in nature, especially from geographic hotspots like the Western Ghats.

Downloads

Download data is not yet available.

References

Karun NC, Sridhar KR. Spatial and temporal diversity of macrofungi in the Western Ghat Forests of India. [Internet] Applied Ecology and Environmental Research. 14. 2016;2:21-31. Available from: http://dx.doi.org/10.15666/aeer/1402_001021

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. [Internet] Nature. 2000;403(6772):853-58. Available from: https://doi.org/10.1038/35002501

Velmurugan P, Kim MJ, Park JS, Karthikeyan K, Lakshmanaperumalsamy P, Lee KJ, Park YJ, Oh BT. Dyeing of cotton yarn with five water soluble fungal pigments obtained from five fungi. [Internet] Fibers and Polymers. 2010;11(4):598-605. Available from: https://doi.org/10.1007/s12221-010-0598-5

Akilandeswari P, Pradeep B V. Exploration of industrially important pigments from soil fungi. [Internet] Appl Microbiol Biotechnol. 2016;100(4):1631-43. Available from: https://doi.org/10.1007/s00253-015-7231-8

Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal pigments and their prospects in different industries. [Internet] Microorganisms. 2019;7(12):604. Available from: https://doi.org/10.3390/microorganisms7120604

Babitha S, Carvahlo JC, Soccol CR, Pandey A. Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid state fermentation. [Internet] World Journal of Microbiology and Biotechnology. 2008;24(11):2675-71. Available from: https://doi.org/10.1007/s11274-008-9794-3

Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: Harnessing filamentous fungi. [Internet] Front Chem. 2020;8:1-23. Available from: https://doi.org/10.3389/fchem.2020.00369

Tuli HS, Chaudhary P, Beniwal V, Sharma AK. Microbial pigments as natural color sources: current trends and future perspectives. [Internet] Journal of Food Science and Technology. 2015;52(8):4669-78. Available from: https://doi.org/10.1007/s13197-014-1601-6

Atalla MM, Elkhrisy EA, Youssef YA, Mohamed AA. Production of textile reddish brown dyes by fungi. [Internet] Malaysian Journal of Microbiology. 2011;7(1):33-40. Available from: http://dx.doi.org/10.21161/mjm.24010

Staniek A, Woerdenbag HJ, Kayser O. Taxomyces andreanae: a presumed paclitaxel producer demystified?. [Internet] Planta medica. 2009;75(15):1561-66. https://doi.org/10.1055/s-0029-1186181

Rao RR, Sagar K, Syamasundar KV. Wild aromatic plant species of western ghats: Diversity, conservation and utilization. In: International Seminar on Multidisciplinary Approaches in Angiosperm Systematics 2006 (pp. 358-71).

Samaga PV, Rai VR. Diversity and bioactive potential of endophytic fungi. [Internet] Annals of Microbiology. 2015.

Uzma F, Konappa NM, Chowdappa S. Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. [Internet] Egyptian Journal of Basic and Applied Sciences. 2016;3(4):335-42. https://doi.org/10.1016/j.ejbas.2016.08.007

Shankar Naik B, Krishnappa M, Krishnamurthy YL. Biodiversity of endophytic fungi from seven herbaceous medicinal plants of Malnad region, Western Ghats, Southern India. [Internet] Journal of Forestry Research. 2014;25(3):707-11. https://doi.org/10.1007/s11676-014-0511-9

Suryavamshi G, Shivanna MB. Diversity and antibacterial activity of endophytic fungi in Memecylon umbellatum Burm. F.-A medicinal plant in the Western Ghats of Karnataka, India. [Internet] Indian J. Ecol. 2020;47:171-80.

Parthibhan S, Ramasubbu R. Mycorrhizal and endophytic fungal association in Paphiopedilum druryi (Bedd.) Stein-A strict endemic and critically endangered orchid of the Western Ghats. [Internet] Ecological Genetics and Genomics. 2020;16:100059. https://doi.org/10.1016/j.egg.2020.100059

Durai S, Saravanan D, Radhakrishnan M. Antimicrobial activity of pigments produced by fungi from Western Ghats. [Internet] J Chem Pharm Res. 2016;8(1):634-38.

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. [Internet] Frontiers in microbiology. 2016;7:906. https://doi.org/10.3389/fmicb.2016.00906

Darsha S, Jayashankar M. Molecular characterization of bacterial and fungal endophytes associated with Vanda testacea, an orchid of Kodagu forest (Western Ghats), India. [Internet] South Asian Journal of Experimental Biology. 2020;10(5):292-300. https://doi.org/10.38150/sajeb.10(5).p292-300

Devi S, Karuppan P. Influence of culture condition and pH on growth and production of brown pigment from Alternaria alternata. [Internet] Int J Sci Res. 2014;3:458-61.

Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé L. Pigments and colorants from filamentous fungi. [Internet] Fungal metabolites. 2017:499-568. Available from: https://doi.org/10.1007/978-3-319-19456-1_26-1

Mapari SA, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants?. [Internet] Trends in Biotechnology. 2009;28(6):300-37. Available from: https://doi.org/10.1016/j.tibtech.2010.03.004

Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón MC. Carotenoid biosynthesis in Fusarium. [Internet] Journal of Fungi. 2017;3(3):39. Available from: https://doi.org/10.3390/jof3030039

Nagia FA, El-Mohamedy RS. Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. [Internet] Dyes and pigments. 2007;75(3):550-55. Available from: https://doi.org/10.1016/j.dyepig.2006.07.002

Medenstev AG, Arinbasarova AY, Akimenko VK. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. [Internet] Applied Biochemistry and Microbiology. 2005;41(5):503-07. Available from: https://doi.org/10.1007/s10438-005-0091-8

Lebeau J, Petit T, Clerc P, Dufossé L, Caro Y. Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. [Internet] Biotechnol Prog. 2019;35(1):1-13. Available from: https://doi.org/10.1002/btpr.2738

Loret MO, Morel S. Isolation and structural characterization of two new metabolites from Monascus. [Internet] Journal of Agricultural and Food Chemistry. Available from: 2010;58(3):1800-03.https://doi.org/10.1021/jf903231p

Teixeira MF, Martins MS, Da Silva JC, Kirsch LS, Fernandes OC, Carneiro AL, Da Conti R, Durán N. Amazonian biodiversity: pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their toxicities. [Internet] Current Trends in Biotechnology and Pharmacy. 2012;6(3):300-11.

Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. [Internet] Mycological research. 2004;108(8):974-48. Available from: https://doi.org/10.1017/S0953756204000619

Tudor D, Robinson SC, Cooper PA. The influence of pH on pigment formation by lignicolous fungi. [Internet] International Biodeterioration and Biodegradation. 2013;80:22-28. Available from: https://doi.org/10.1016/j.ibiod.2012.09.013

Kumar CG, Mongolla P, Pombala S, Kamle A, Joseph J. Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. [Internet] Lett Appl Microbiol. 2011;53(3):350-58. Available from: https://doi.org/10.1111/j.1472-765X.2011.03116.x

Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY. Secondary metabolites from an algicolous Aspergillus versicolor strain. [Internet] Marine drugs. 2012;10(1):131-39. Available from: https://doi.org/10.3390/md10010131

Gessler NN, Egorova AS, Belozerskaya TA. Fungal Anthraquinones. [Internet] Applied Biochemistry and Microbiology. 2013;49(2):99-85. Available from: https://doi.org/10.1134/S000368381302004X

Boonyapranai K, Tungpradit R, Hieochaiphant S. Optimisation of submerged culture for the production of Naphthoquinones pigment by Fusarium verticillioides. [Internet] Chiang Mai Journal of Science. 2008;35(3):457-66.

Babula P, Adam V, Havel L, Kizek R. Noteworthy secondary metabolites naphthoquinones-occurrence, pharmacological properties and analysis. [Internet] Current Pharmaceutical Analysis. 2009;5:68-47. Available from: https://doi.org/10.2174/157341209787314936

Moharram AM, Mostafa M E, Ismail MA. Chemical profile of Monascus ruber strains. [Internet] Food Technology and Biotechnology. 2012;50(4):490-99.

Yang T, Liu J, Luo F, Lin Q, Rosol TJ, Deng X. Anticancer properties of Monascus metabolites. [Internet] Anti-cancer drugs. 2014;25(7):735-44. Available from: doi: 10.1097/CAD.0000000000000102

Juzlova P, Martinkova L, Kren V. Secondary metabolites of the fungus Monascus: A Review. [Internet] Journal of Industrial Microbiology. 1996;16:163-17. Available from: https://doi.org/10.1007/BF01569999

Mostafa ME, Abbady MS. Secondary metabolites and bioactivity of the Monascus pigments review article. [Internet] Global Journal of Biotechnology and Biochemistry. 2014;9: 13-21.

Takahashi JA, Carvalho SA. Nutritional potential of biomass metabolites from filamentous fungi. [Internet] Current Research Topics in Applied Microbiology and Microbial Biotechnology. 2010;2:1135-26.

Dufosse L. Microbial production of food grade pigments. [Internet] Food Technology and Biotechnology. 2006;44:321-13.

Santos-Ebinuma VC, Teixeira MF, Pessoajr A. Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. [Internet] Journal of Microbiology and Biotechnology. 2013;23:810-21. Available from: https://doi.org/10.4014/jmb.1211.11057

Lucas EMF, Machado Y, Ferreira AA, Dolabella LMP, Takahashi JA. Improved production of pharmacologically active sclerotiorin by Penicillium sclerotiorum. [Internet] Tropical Journal of Pharmaceutical Research. 2010;9:371-65. https://doi.org/10.4314/tjpr.v9i4.58930

Celestino JR, Carvalho LE, Lima MP, Lima AM et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. [Internet] Process Biochemistry. 2014;49:575-69. Available from: https://doi.org/10.1016/j.procbio.2014.01.018

Capon R, Stewart M, Ratnayake R, Lacey E, Gill JH. Citromycetins, Bilains AC. New aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. [Internet] Journal of Natural Products. 2007;70:1752-46. https://doi.org/10.1021/np0702483

Mukherjee PK, Kenerley CM. Regulation of morphogenesis and bio control properties in Trichoderma virens by a velvet protein, vel1. [Internet] Applied and Environmental Microbiology. 2010;76:2352-45. Available from: https://doi.org/10.1128/AEM.02391-09

Kamala T, Devi SI, Sharma KC, Kennedy K. Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo–Burma biodiversity hotspot region with special reference to Manipur. [Internet] Journal of Biomedicine and Biotechnology. 2015;285261-82. Available from: https://doi.org/10.1155/2015/285261

Chitale A, Jadhav DV, Waghmare SR, Sahoo AK, Ranveer RC. Production and characterization of brown colored pigment from Trichoderma viride. [Internet] Electronic Journal of Environmental Agricultural and Food Chemistry. 2012;11:527-29.

Gupta C, Sharma D, Aggarwal S, Nagpal N. Pigment production from Trichoderma sp. for dyeing of silk and wool. [Internet] International Journal of Science and Nature. 2013;4:355-51.

Paranagama PA, Wijeratne EK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AL. Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. [Internet] J Nat Prod. 2007;70:1705-700. Available from: https://doi.org/10.1021/np070466w

Zheng Y, Chiang T-Y, Huang C-L, Gong X. Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm. [Internet] J Microbiol. 2018;56(5):345-37. Available from: https://doi.org/10.1007/s12275-018-7438-3

Zhou W, Wu Y, Chu L, Li W, Li H. Endophytic fungal diversity of four bryophyte species in Dawei Mountain, Southwest of China. [Internet] Wei Sheng Wu Xue Bao. 2015;55(6): 771-64.

Wang LE, Xiong P, Strom SS, Goldberg LH et al. In vitro sensitivity to ultraviolet light and skin cancer risk: a case–control analyses. [Internet] J Natl Cancer Inst. 2005;97:1831-22. Available from: https://doi.org/10.1093/jnci/dji429

Kathiresan K, Manivannan S. Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. African journal of Biotechnology. 2006;5(10). https://doi.org/10.3923/jm.2006.438.442

Pasin TM, dos Anjos Moreira E, de Lucas RC, Benassi VM, Ziotti LS, Cereia M, Polizeli MD. Novel amylase-producing fungus hydrolyzing wheat and brewing residues, Aspergillus carbonarius, discovered in tropical forest remnant. [Internet] Folia microbiologica. 2020;65(1):173-84. Available from: https://doi.org/10.1007/s12223-019-00720-4

Mukunda S, Onkarappa R, Prashith K. Isolation and Screening of Industrially Important Fungi from the Soils of Western Ghats of Agumbe and Koppa, Karnataka, India. [Internet] Sci Technol Arts Res J. 2013;1(4):27. https://doi.org/10.4314/star.v1i4.98816

Sohail M, Ahmad A, Khan SA. Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. [Internet] 3 Biotech. 2016;6(1):1-8. Available from: https://doi.org/10.1007/s13205-016-0420-z

Li XH, Yang HJ, Roy B, Park EY, Jiang LJ, Wang D, Miao YG. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. [Internet] Microbiological Research. 2010;165(3):190-98. Available from: https://doi.org/10.1016/j.micres.2009.04.001

Gnanadoss JJ, Devi SK. Optimization of nutritional and culture conditions for improved protease production by Aspergillus nidulans and Aspergillus flavus. [Internet] Journal of Microbiology, Biotechnology and Food Sciences. 2021;2021:518-23. https://doi.org/10.15414/jmbfs.2015.4.6.518-523

Ja’afaru MI, Chimbekujwo KI, Ajunwa OM. Purification, characterization and de-staining potentials of a thermotolerant protease produced by Fusarium oxysporum. [Internet] Periodica Polytechnica Chemical Engineering. 2020;64(4):539-47. Available from: https://doi.org/10.3311/PPch.14523

Joshi R, Sharma R, Kuila A. Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation. [Internet] Bioresource Technology Reports. 2019;5:134-40. Available from: https://doi.org/10.1016/j.biteb.2019.01.005

Kavitha K, Shankari K, Meenambiga SS. A review on extraction of lipase from Aspergillus Species and its applications. [Internet] Research Journal of Pharmacy and Technology. 2021;14(8):4471-75. Available from: DOI:10.52711/0974-360X.2021.00777

Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry-A review. [Internet] Innovative Food Science and Emerging Technologies. 2008;9(2):161-69. https://doi.org/10.1016/j.ifset.2007.04.014

Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. [Internet] Ultrasonics sonochemistry. 2017;34:540-60. https://doi.org/10.1016/j.ultsonch.2016.06.035

Guo L, Kong D, Yao K, Li J, Li H, Lan N, Hua Y. Optimization and characterization of pigment production from Boletus edulis Bull.: Fr. by ultrasonic-assisted extraction. [Internet] Journal of Food Processing and Preservation. 2020;44(7):e14534. https://doi.org/10.1111/jfpp.14534

Lebeau J, Venkatachalam M, Fouillaud M, Petit T, Vinale F, Dufossé L, Caro Y. Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. [Internet] Journal of Fungi. 2017;3(3):34. Available from: https://doi.org/10.3390/jof3030034

Vázquez MB, Comini LR, Martini RE, Montoya SN, Bottini S, Cabrera JL. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook. f.(Rubiaceae). [Internet] Ultrasonics Sonochemistry. 2014;21(2):478-84. Available from: https://doi.org/10.1016/j.ultsonch.2013.08.023

Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. [Internet] Ultrasonics Sonochemistry. 2006 Sep 1;13(6):543-48. Available from: https://doi.org/10.1016/j.ultsonch.2005.09.009

Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufoss L. Pigments and colorants from filamentous fungi. In: Mérillon J-M, Ramawat K., editors. Fungal Metabolites. Switzerland: Springer International Publishing; 2015. DOI:10.3390/jof6020068

Khaw KY, Parat MO, Shaw PN, Falconer JR. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. [Internet] Molecules. 2017;22(7):1186. Available from: https://doi.org/10.3390/molecules22071186

Da Silva RP, Rocha-Santos TA, Duarte AC. Supercritical fluid extraction of bioactive compounds. [Internet] TrAC Trends in Analytical Chemistry. 2016;76:40-51. Available from: https://doi.org/10.1016/j.trac.2015.11.013

Aruldass CA, Dufossé L, Ahmad WA. Current perspective of yellowish-orange pigments from microorganisms- a review. [Internet] J Clean Prod. 2018;180:168-82. Available from: DOI : 10.1016/j.jclepro.2018.01.093

Babu CM, Chakrabarti R, Sambasivarao KR. Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. [Internet] LWT-Food Science and Technology. 2008 Mar 1;41(2):227-35. Available from: https://doi.org/10.1016/j.lwt.2007.03.006

Ventura SP, Santos-Ebinuma VC, Pereira JF, Teixeira MF, Pessoa A, Coutinho JA. Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. [Internet] Journal of Industrial Microbiology and Biotechnology. 2013 May 1;40(5):507-16. Available from: https://doi.org/10.1007/s10295-013-1237-y

Deshmukh SK, Lagashetti A, Singh SK, Badgujar HF, Kumar U. Fungal Pigment Research in India: An Overview. [Internet] Progress in Mycology. 2021:519-44. Available from: DOI: 10.1007/978-981-16-3307-2_17

Goettel M, Eing C, Gusbeth C, Straessner R, Frey W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. [Internet] Algal Research. 2013;2(4):401-48. Available from: https://doi.org/10.1016/j.algal.2013.07.004

Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR. Fungal morphology and fragmentation behavior in a fed?batch Aspergillus oryzae fermentation at the production scale. [Internet] Biotechnology and Bioengineering. 2000;70(3):300-12. https://doi.org/10.1002/1097-0290(20001105)70:3%3C300::AID-BIT7%3E3.0.CO;2-3

Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope JA, Russo AP. Novel micro?bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. [Internet] Biotechnology and bioengineering. 2010;106(1):57-67. Available from: https://doi.org/10.1002/bit.22664

Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J. A new large-scale manufacturing platform for complex biopharmaceuticals. [Internet] Biotechnology and Bioengineering. 2012;109(12):3049-58. Available from: https://doi.org/10.1002/bit.24578

Mukherjee G, Singh SK. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. [Internet] Process Biochemistry. 2011;46(1):188-92. Available from: https://doi.org/10.1016/j.procbio.2010.08.006

Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. [Internet] Biotechnology advances. 2007;25(3):244-63. Available from: https://doi.org/10.1016/j.biotechadv.2007.01.002

Rayati DJ, Aryantha IN, Arbianto P, Ganesha J, Indonesia B. The optimization of nutrient factors in spore production of Paecilomyces fumosoroseus (Wize) Brown & Smith with submerged–surface fermentation system. In: The Fifth Symposium on Agri-Bioche, March-11-2001 Tokyo, Japan.

Poorniammal R, Gunasekaran S. Physical and chemical stability analysis of Thermomyces yellow pigment for food application. [Internet] International Journal of Food and Fermentation Technology. 2015;5(1):47. Available from: DOI:10.5958/2277-9396.2015.00006.9

Panesar R, Kaur S, Panesar PS. Production of microbial pigments utilizing agro-industrial waste: a review. [Internet] Current Opinion in Food Science. 2015;1:70-76. Available from: https://doi.org/10.1016/j.cofs.2014.12.002

Hamano PS, Kilikian BV. Production of red pigments by Monascus ruber in culture media containing corn steep liquor. [Internet] Brazilian Journal of Chemical Engineering. 2006;23(4):443-39. https://doi.org/10.1590/S0104-66322006000400002

Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. [Internet] Current Opinion in Biotechnology. 2014;26:56-61. Available from: https://doi.org/10.1016/j.copbio.2013.09.007

Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. [Internet] Current Genetics. 2015;61(3):309-24. Available from: https://doi.org/10.1007/s00294-014-0454-x

Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. [Internet] Process Biochemistry. 2013;48(7):1065-79. Available from: https://doi.org/10.1016/j.procbio.2013.06.006

Osman MY, Sharaf IA, Osman HM, El-Khouly ZA, Ahmed EI. Synthetic organic food colouring agents and their degraded products: effects on human and rat cholinesterases. [Internet] British Journal of Biomedical Science. 2004;61(3):128-32. Available from: https://doi.org/10.1080/09674845.2004.11732657

Kamel MM, El Zawahry MM, Ahmed NS, Abdelghaffar F. Ultrasonic dyeing of cationized cotton fabric with natural dye. Part 1: Cationization of cotton using Solfix E. [Internet] Ultrasonics Sonochemistry. 2009;16(2):243-49. Available from: https://doi.org/10.1016/j.ultsonch.2008.08.001

Gupta S, Aggarwal S. Dyeing wet blue goat nappa skin with a microbial colorant obtained from Penicillium minioluteum. [Internet] Journal of Cleaner Production. 2016;127:585-90. Available from: https://doi.org/10.1016/j.jclepro.2016.03.043

Pandiyarajan S, Premasudha P, Kadirvelu K. Bio-production of novel water-soluble yellow pigment from Aspergillus sp. and exploring its sustainable textile applications. [Internet] 3 Biotech. 2018;8(9):1-11. https://doi.org/10.1007/s13205-018-1424-7

Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathi G. Natural dye production from Thermomyces sp fungi for textile application. 2013. Available from: https://doi.org/10.1007/s13205-018-1424-7

Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of Monascus pigments produced in submerged fermentation. [Internet] Journal of Food Processing and Preservation. 2014;38(4):1860-65. Available from: https://doi.org/10.1111/jfpp.12157

Visalakchi S, Muthumary J. Antimicrobial activity of the new endophytic Monodictys castaneae SVJM139 pigment and its optimization. [Internet] African Journal of Microbiology Research. 2009 Sep 30;3(9):550-56. Available from: https://doi.org/10.5897/AJMR.9000079.

Kumar A, Verma U, Sharma H. Antibacterial Activity Monascus purpureus (red pigment) Isolated from Rice malt. [Internet] Asian Journal of Biology and Life Sciences. 2012;1:252-55.

Lucas EM, Castro MC, Takahashi JA. Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. [Internet] Brazilian Journal of Microbiology. 2007;38:785-89. Available from: https://doi.org/10.1590/S1517-83822007000400036

Petit P, Lucas EM, Abreu LM, Pfenning LH, Takahashi JA. Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. [Internet] Electronic Journal of Biotechnology. 2009;12(4):8-9. Available from: DOI: 10.2225/vol12-issue4-fulltext-9 https://doi.org/10.2225/vol12-issue4-fulltext-9

Geweely NS. Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. [Internet] Journal of Life Sciences. 2011 Sep 1;5(9):201.

Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. [Internet] Curr Opin Biotechnol. 2005;16(2):231-38. Available from: https://doi.org/10.1016/j.copbio.2005.03.004

Dharmaraj S, Ashokkumar B, Dhevendaran K. Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. [Internet] Food Research International. 2009;42(4):487-92. Available from: https://doi.org/10.1016/j.foodres.2009.02.006

Wang JJ, Lee CL, Pan TM. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. [Internet] Journal of Agricultural and Food Chemistry. 2004 Nov 17;52(23):6977-82. Available from: https://doi.org/10.1021/jf049783o

Takahashi JA, Carvalho SA. Nutritional potential of biomass and metabolites from filamentous fungi. [INternet] Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. 2010;2:1126-35.

Garrido-Fernández J, Maldonado-Barragán A, Caballero-Guerrero B, Hornero-Méndez D, Ruiz-Barba JL. Carotenoid production in Lactobacillus plantarum. [Internet] International Journal of Food Microbiology. 2010;140(1):34-39. Available from: https://doi.org/10.1016/j.ijfoodmicro.2010.02.015

Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ. Production and food applications of the red pigments of Monascus ruber. [Internet] Journal of Food Science. 1993;58(5):1099-102. Available from: https://doi.org/10.1111/j.1365-2621.1993.tb06123.x

Rankovi? BR, Kosani? MM, Stanojkovi? TP. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. [Internet] BMC complementary and alternative medicine. 201;11(1):1-8. Available from: https://doi.org/10.1186/1472-6882-11-97

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. [Internet] Pharmacognosy Reviews. 2010;4(8):118. Available from: doi: 10.4103/0973-7847.70902

Li F, Xue F, Yu X. GC–MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. [Internet] Current Microbiology. 2017;74(4):532-39. Available from: https://doi.org/10.1007/s00284-017-1220-3

Thiagarajan P, Nalankilli G. Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers. [Internet] Indian Journal of Fibre and Textile Research. 2013; 38:161-64.

Ghaheh FS, Khoddami A, Alihosseini F, Jing S, Ribeiro A, Cavaco-Paulo A, Silva C. Antioxidant cosmetotextiles: Cotton coating with nanoparticles containing vitamin E. [Internet] Process Biochemistry. 2017; 59:46-51. Available from: https://doi.org/10.1016/j.procbio.2017.04.020

Keekan KK, Hallur S, Modi PK, Shastry RP. Antioxidant activity and role of culture condition in the optimization of red pigment production by Talaromyces purpureogenus KKP through response surface methodology. [Internet] Current Microbiology. 2020;77(8):1780-89. Available from: https://doi.org/10.1007/s00284-020-01995-4

Lagashetti AC, Singh SK, Dufossé L, Srivastava P, Singh PN. Antioxidant, Antibacterial and Dyeing Potential of Crude Pigment Extract of Gonatophragmium triuniae and Its Chemical Characterization. [Internet] Molecules. 2022;27(2):393. Available from: https://doi.org/10.3390/molecules27020393

Kallingal A, Ayyolath A, Kundil VT, Joseph TM, Chandra ND, Haponiuk JT, Thomas S, Variyar JE. Extraction and optimization of Penicillium sclerotiorum strain AK-1 pigment for fabric dyeing. [Internet] Journal of Basic Microbiology. 2021; 61:900-09. Available from: https://doi.org/10.1002/jobm.202100349

Ayyolath A, Kallingal A, Kundil VT, Variyar EJ. Studies on the bioactive properties of Penicillium mallochi ARA-1 pigment isolated from coffee plantation. [Internet] Biocatalysis and Agricultural Biotechnology. 2020;30:101841. Available from: https://doi.org/10.1016/j.bcab.2020.101841

Huang CH, Pan JH, Chen B, Yu M, Huang HB, Zhu X, Lu YJ, She ZG, Lin YC. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. [Internet] Marine drugs. 2011 May;9(5):832-43. Available from: https://doi.org/10.3390/md9050832

Feng Y, Shao Y, Chen F. Monascus pigments. [Internet] Applied Microbiology and Biotechnology. 2012;96(6):1421-40. Available from: https://doi.org/10.1007/s00253-012-4504-3

Jayaram S, Sarojini S. Bioprospecting of Fungal Endophytes in Hulimavu Lake for their Repertoire of Bioactive Compounds. ECS Transactions. 2021; 107 (1):10471.https://doi.org/10.1149/10701.10471ecst

Fouda AH, Hassan SE, Eid AM, Ewais EE. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). [Internet] Annals of Agricultural Sciences. 2015; 60:95-104. Available from: https://doi.org/10.1016/j.aoas.2015.04.001

Cuevas R, Duran N, Diez MC, Tortella GR, Rubilar O. Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. [Internet] Journal of Nanomaterials. 2015;16:57. Available from: https://doi.org/10.1155/2015/789089

Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. [Internet] Journal of Photochemistry and Photobiology B: Biology. 2019;190:103-09. Available from: https://doi.org/10.1016/j.jphotobiol.2018.11.017

Mani VM, Kalaivani S, Sabarathinam S, Vasuki M, Soundari AJ, Das MA, Elfasakhany A, Pugazhendhi A. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations. [Internet] Environmental Research. 2021;201:111502. Available from: https://doi.org/10.1016/j.envres.2021.111502

Srianta I, E. Zubaidah, T. Estiasih, M. Yamada, Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation. [Internet] Biocatal. Agric. Biotechnol. 7 (2016) 181-86. https://doi.org/10.1016/j.bcab.2016.05.011

Published

09-07-2022 — Updated on 13-08-2022

Versions

How to Cite

1.
Sivakumar B, Ramananda Rao N, Poornamath BP, Jayaram S, Sarojini S. Multifarious pigment producing fungi of Western Ghats and their potential. Plant Sci. Today [Internet]. 2022 Aug. 13 [cited 2024 May 9];9(3):733-47. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/1759

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.