Rehydration kinetics of thin layer-dried red Amaranth (Amaranthus tricolor L.) leaves
DOI:
https://doi.org/10.14719/pst.1766Keywords:
Red Amaranth, Rehydration, Rehydration kinetics, Peleg’s constantAbstract
The rehydration behaviour of a thin layer dried red Amaranth leaves were studied at various temperatures 38°C, 50°C, 60°C and 80°C. Three types of pretreated samples were used for this rehydration process: normal, chlorinated and processed. Pretreated samples were dried at 50°C, 60°C and 80°C temperature. The rehydration process of the dried red amaranth leaves were satisfactorily described by the Peleg’s equation. According to the Peleg’s equation rehydration temperature increases from 38°C to 80°C, then the rate of rehydration constant K1 significantly decreases and the capacity constant K2 varies with different temperatures of rehydration. The increase in rehydration ratio was significant only as temperature increased from 38°C to 80°C.
Downloads
References
Ergün K, Çal??kan G, Dirim SN. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transfer. 2016; 52:2697-705. https://doi.org/10.1007/s00231-016-1773-x
Fathima A, Begum K, Rajalakshmi D. Microwave drying of selected greens and their sensory characteristics. Plant Foods Hum Nutr. 2001; 56:303-11. https://doi.org/10.1023/A:1011858604571
Maharaj V, Sankat CK. The rehydration characteristics and quality of dehydrated dasheen leaves. Canadian Agricultural Engineering. 2000; 42:81-85.
Maskan M. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering. 2001;48:177-82. https://doi.org/10.1016/S0260-8774(00)00154-0
Mujaffar S, Lee Loy A. The rehydration behavior of microwave-dried amaranth (Amaranthus dubius) leaves. Food Science and Nutritio. 2016;5:399-406. DOI: 10.1002/fsn3.406
Chauhan N, Singh S, Singh J, Samsher, Chandra S, Singh BR, Singh GR. Effect of drying conditions on rehydration ratio of dried mint leaves. Journal of Pharmacognosy and Phytochemistry. 2018; SP1: 1507-509.
Piotr P Lewicki. Effect of pre?drying treatment, drying and rehydration on plant tissue properties: A review, International Journal of Food Properties.1998;1(1):1-22. DOI:10.1080/10942919809524561
Planinic M, Velic D, Tomas S, Bilic M, Bucic A. Modelling of drying and rehydration of carrots using Peleg_s model. European Food Research and Technology. 2005; 221:446-51. DOI 10.1007/s00217-005-1200-x
Cunningham SE, Mcminn WA, Magee TRA, Richardson PS. Experimental study of rehydration kinetics of potato cylinders. Food and Bioproduct Processing. 2008. https://doi.org/10.1016/j.fbp.2007.10.008
Laura C Okpala, Constance A Ekechi. Rehydration characteristics of dehydrated West African pepper (Piper guineense) leaves. Food Science and Nutrition. 2014; 2(6): 664-68 doi: 10.1002/fsn3.149
Krokida MK, Marinos-Kouris D. Rehydration kinetics of dehydrated products. Journal of Food Engineering. 2003;57:1-7. https://doi.org/10.1016/S0260-8774(02)00214-5;2003
Sultana A, Ghosh U. Estimation of effective moisture diffusivity of Red Amaranth leaves (Amaranthus tricolor L.) for thin-layer drying technology, International Journal of Agricultural Technology. 2021; 17(2):737-52.
Islam MR, Saha CK, Sarker NR, Jalil MA, Hasanuzzaman M. Effect of variety on proportion of botanical fractions and nutritive value of different Napier grass (Pennisetum purpureum) and relationship between botanical fractions and nutritive value. Asian Australasian Journal of Animal Sciences. 2003;16:837-42. https://doi.org/10.5713/ajas.2003.837
Augustin Scalbert, Ian T Johnson, Mike Saltmarsh, Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition. 2005;81(1):215S-217S. https://doi.org/10.1093/ajcn/81.1.215S
Laila Khandaker, Md B Ali, Shinya Oba. Total polyphenol and antioxidant activity of Red Amaranth (Amaranthus tricolor L.) as affected by different sunlight level. Journal of the Japanese Society for Horticultural Science. 2008;77(4):395-401. https://doi.org/10.2503/jjshs1.77.395 Available online at www.jstage.jst.go.jp/browse/jjshs1
Dadali G, Demirhan E, Ozbek B. Effect of drying conditions on rehydration kinetics of microwave dried spinach. Food and Bioproducts Processing. 2008; 86(4): 235-41. https://doi.org/10.2503/jjshs1.77.395
Turhan M, Sayar S, Gunasekaran S. Application of Peleg model to study water absorption in chickpea during soaking. Journal of Food Engineering. 2002;53:153-59. https://doi.org/10.1016/S0260-8774(01)00152-2
Shafaei SM, Masoumi AA, Roshan H. Analysis of water absorption of bean and chickpea during soaking using Peleg model. Journal of the Saudi Society of Agricultural Sciences. 2016;15(2):135-44. https://doi.org/10.1016/j.jssas.2014.08.003.
Cunningham SE, Mcminn WAM, Magee TRA, Richardson PS. Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing. 2008;86(1):15-24. https://doi.org/10.1016/j.fbp.2007.10.008
Downloads
Published
Versions
- 01-10-2022 (2)
- 25-09-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Arjuma Sultana, Uma Ghosh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).