Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 1 (2023)

Identification, characterization and domestication of new sorghum (Sorghum bicolor L.) genotypes to saline environments of the Aral sea regions

DOI
https://doi.org/10.14719/pst.1797
Submitted
4 April 2022
Published
24-11-2022 — Updated on 12-01-2023
Versions

Abstract

Assessment of crop genetic resources is an efficient tool to generate new stress-tolerant varieties with high yield characteristics for harsh environments such as in the Aral Sea regions. Sorghum is a C4 grass capable of both high biomass and grain yields in semiarid and drier parts of the world. In this study, sixteen sorghum genotypes were assessed in terms of grain and biomass production under the saline aquifer of the Aral Sea region during the 2019-2021 growing seasons. The tested sorghum genotypes were planted as a split-plot design with three replicates in the experimental field. The highest plant height was found in SSV-84 (288 cm) and Kulzha (272 cm), indicating good adaptation features under the saline environment (moderately saline serosems soil; EC 8-10 dS m-1). A considerable difference was observed in the grain and biomass yield of the tested sorghum genotypes. The highest grain yield was produced by Kazakhstanskoe-16 (6970 kg ha-1) while the highest biomass yield was achieved by Orange-160 (57770 kg ha-1). The correlation analysis showed a weak interaction (r=0.524) between the grain yield and vegetation period parameters, implying a genetic specificity has an advantage of the agronomic performance. Lab experiments also confirmed the superiority of the selected genotypes over the local genotype in regards of seed germination and seedling growth. Based on the field and lab experiments, Kazakhstanskoe-16 and Orange-160 were found to be salt tolerant sorghum genotypes with high yield traits and recommended for further assessment to the State Varietal Commission of Agricultural Crops for large-scale use in salt-affected arid areas.

References

  1. Khaitov B, Karimov AA, Toderich K, Sultanova Z, Mamadrahimov A, Allanov K, Islamov S. Adaptation, grain yield and nutritional characteristics of quinoa (Chenopodium quinoa) genotypes in marginal environments of the Aral sea basin. J Plant Nutr. 2020;44(9):1365-79. https://doi.org/10.1080/01904167.2020.1862200
  2. Khabibullaev BSh, Shomurodov KhF, Adilov BA. Impact of long-term climate change on Moluccella bucharica (B. Fedtsch.) Ryding. Population decline in Uzbekistan. Plant Sci Today. 2022; 9(2): 357-63. https://doi.org/10.14719/pst.1464
  3. Allanov K, Sheraliev K, Ulugov C, Ahmurzayev S, Sottorov O, Khaitov B, Park KW. Integrated effects of mulching treatment and nitrogen fertilization on cotton performance under dryland agriculture. Commun Soil Sci Plant Anal. 2019;50(15): 1907-18. https://doi:org/10.1080/00103624.2019.164849
  4. Vom Brocke K, Trouche G, Weltzien E, Barro-Kondombo CP, Gozé E, Chantereau J. Participatory variety development for sorghum in Burkina Faso: Farmers’ selection and farmers’ criteria. Field Crops Res. 2010; 119(1): 183-94. https://doi:org/10.1016/j.fcr.2010.07.005
  5. Alirzayeva E, Ali-zade V, Shirvani T, Toderich K. Evaluation of wild halophytes of Aralo-Caspian flora towards soil restoration and food security improvement. In: Plants, Pollutants and Remediation. Dordrecht: Springer. 2015; p. 63-98. https://doi.org/10.1007/978-94-017-7194-8_4
  6. Zewdu E, Hadgu G, Nigatu L. Impacts of climate change on sorghum production in North-Eastern Ethiopia. Afr J Environ Sci Tech. 2020; 14(2): 49-63. https://doi:org/10.5897/AJEST2019.2803
  7. Mehmet OTEN. The effects of different sowing time and harvesting height on hydrocyanic acid content in some silage sorghum (Sorghum bicolor L.) varieties. Turk J of Field Crops. 2017;22(2):211-17. https://doi.org/10.17557/tjfc.356224
  8. Ramatoulaye F, Mady C, Fallou S. Production and use sorghum: a literature review. J Nutr Health Food Sci. 2016;4(1):1-4. http://dx.doi.org/10.15226/jnhfs.2016.00157
  9. USAID; Sector Environmental Guideline: Crop Production. 2020; Available at:| www.usaid.gov/environmental-procedures/sectoral-environmental-social-best-practices/seg-crop-production/pdf.
  10. FAOSTAT Online Database. 2021; Available at: www.faostat.org (accessed December 2021).
  11. Özyazici MA, Açikba? S. Effects of different salt concentrations on germination and seedling growth of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] Cultivars. Türkiye Tarim Ara?t Derg. 2021; 8(2): 133-43. https://doi.org/10.19159/tutad.769463
  12. Rajabi Dehnavi A, Zahedi M, Ludwiczak A, Cardenas Perez S, Piernik A. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agron. 2020;10(6):859. https://doi.org/10.3390/agronomy10060859
  13. Geressu K, Gezaghegne M. Response of some lowland growing sorghum (Sorghum bicolor (L.) Moench) accessions to salt stress during germination and seedling growth. Afr J Agric Res. 2008;3:44-48. https://doi.org/10.5897/AJAR12.045
  14. El Naim AM, Mohammed KE, Ibrahim EA, Suleiman NN. Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor (L.) Moench) cultivars. Sci Technol. 2012;2:16-20. https://doi.org/10.5923/j.scit.20120202.03
  15. Mbinda W, Kimtai M. Evaluation of morphological and biochemical characteristics of sorghum (Sorghum bicolor (L.) Moench) varieties in response salinity stress. Annu Res Rev Biol. 2019;15:1-9. https://doi.org/10.3390/agronomy10060859
  16. NIAST. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology. Suwon, Korea: Academic Press; 2000.
  17. CropStat 2.7. Statistical Software Program. 2015. International Rice Research Institute, Philippines. www.bbi.irri.org/products (Accessed December 21, 2021).
  18. Hefny MM, Metwali EMR, Mohamed AI. Assessment of genetic diversity of sorghum (Sorghum bicolor (L.) Moench) genotypes under saline irrigation water based on some selection indices. Aust J Crop Sci. 2013; 7(12): 1935-45. https://doi.org/10.1016/j.sjbs.2014.05.005
  19. Punia H, Tokas J, Malik A, Singh S, Phogat DS, Bhuker A et al. Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum (Sorghum bicolor (L.) Moench). S Afr J Bot. 2021;140: 409-18. https://doi.org/10.1016/j.sajb.2020.09.036
  20. Ogbaga CC, Stepien P, Dyson BC, Rattray NJW, Ellis DI, Goodacre R, Johnson GN. Biochemical analyses of sorghum varieties reveal differential responses to drought. PLoS One 2016;11:1-20. https://doi.org/10.1371/journal.pone.0154423
  21. Singh D, Singh CK, Kumari S, Tomar RSS, Karwa S, Singh R et al. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. PLoS ONE 2017; 12(5): p.e0177465. https://doi.org/10.1371/journal.pone.0177465
  22. Erickson JE, Woodard KR, Sollenberger LE. Optimizing sweet sorghum production for biofuel in the southeastern USA through nitrogen fertilization and top removal. Bioenergy Res. 2012; 5(1):86-94. https://doi.org/10.15159/AR.20.072
  23. Mumtaz A, Hussain D, Saeed M, Arshad M, Yousaf MI. Stability and adaptability of sorghum hybrids elucidated with genotype-environment interaction biplots. Turk J Field Crops. 2019;24(2):155-63. https://doi.org/10.17557/tjfc.631130
  24. Pancaldi F, Trindade LM. Marginal lands to grow novel bio-based crops: A plant breeding perspective. Front Plant Sci. 2020; 11:227. https://doi.org/10.3389/fpls.2020.00227
  25. Jones MB, Finnan J, Hodkinson TR. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy. 2015;7:375-85. https://doi.org/10.1111/gcbb.12203
  26. Zhu XG, Chang TG, Song QF, Finnan J, Barth S, MÃ¥rtensson LM. A Systems approach guiding future biomass crop development on marginal land. In: Barth S, Murphy-Bokern D, Kalinina O, Taylor G, Jones M (Editors). Perennial Biomass Crops for a Resource-Constrained World. Berlin: Springer. 2016; p. 209-24. https://doi.org/10.1007/978-3-319-44530-4_18
  27. Shakeri E, Emam Y, Tabatabaei SA, Sepaskhah AR. Evaluation of grain sorghum (Sorghum bicolor L.) lines/cultivars under salinity stress using tolerance indices. Int J Plant Product. 2017;11(1):101-15. https://doi.org/10.1080/11263504.2019.1569568
  28. Khatun M, Shuvo MAR, Salam MTB, Rahman SH. Effect of organic amendments on soil salinity and the growth of maize (Zea mays L.). Plant Sci Today. 2019;6(2):106-11. https://doi.org/10.14719/pst.2019.6.2.491

Downloads

Download data is not yet available.