Cellular and signaling mechanisms supporting cadmium tolerance in salicylic acid treated seedlings
DOI:
https://doi.org/10.14719/pst.2016.3.1.180Keywords:
cadmium tolerance, salicylic acid, intracellular chelation, extracellular chelation, signal transductionAbstract
This review spotlights on recent indications that recognizes potential cellular mechanisms that may be involved in the tolerance of salicylic acid (SA)-treated seedlings to the presence of cadmium (Cd) in their environment. It appears probable that SA stimulates signaling systems implicated in plant defense-related actions against Cd-induced oxidative stress. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall constituents. Cellular chelation of metals in the cytosol by a range of ligands (peptides, phytochelatins (PCs)), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms improving tolerance. Free-radical scavenging capacities through the activity of antioxidant enzymes or production of peptides and PCs add another line of defense against the toxic effect of Cd. The SA signaling events can be attributed to the extracellular SA perception model in which reactions between SA and apoplastic proteins result in acute oxidative burst under Cd stress.
Downloads
References
Aranega-Bou, P., M. de la O Leyva, I. Finiti, P. García-Agustín, and C. González-Bosch. 2014. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science 5: 488. doi: 10.3389/fpls.2014.00488. PMID: PMC4181288.
Armendariz, A.L., M.A. Talano, C. Travaglia, H. Reinoso, A.L. Wevar Oller, and E. Agostini. 2016. Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiology and Biochemistry 98: 119-127. doi: 10.1016/j.plaphy.2015.11.021. PMID: 26686284.
Atkinson, N.J., and P.E. Urwin. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63: 3523–3543. doi: 10.1093/jxb/ers100. PMID: 22467407.
Belkadhi, A., H. Hediji, Z. Abbes, W. Djebali, and W. Chaïbi. 2012. Influence of salicylic acid pretreatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. African Journal of Biotechnology 11 : 9788-9796. doi: 10.5897/AJB11.2051.
Belkadhi, A., A. De Haro, P. Soengas, S. Obregόn, M.E. Cartea, W. Djebali, and W. Chaïbi. 2013. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. OMICS : A Journal of Integrative Biology 17(7): 398-406. doi: 10.1089/omi.2013.0030. PMID: 23758477.
Belkadhi, A., A. De Haro, P. Soengas, S. Obregόn, M.E. Cartea, W. Chaϊbi, and W. Djebali. 2014. Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). Journal of Plant Interactions 9(1): 647–654. doi: 10.1080/17429145.2014.890751.
Belkadhi A., A. De Haro, S. Obregon, W. Chaϊbi, and W. Djebali. 2015. Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environmental Science and Pollution Research 22 (2): 1457-1467. doi: 10.1007/s11356-014-3475-6. PMID: 25163565.
Belkadhi A., A. De Haro, S. Obregon, W. Chaϊbi, and W. Djebali. 2015. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.). Ecotoxicology and Environmental Safety 120: 102-109. doi: 10.1016/j.ecoenv.2015.05.028. PMID: 26057076.
Belkhadi, A., H. Hediji, Z. Abbes, I. Nouairi, Z. Barhoumi, M. Zarrouk, W. Chaïbi, and W. Djebali. 2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety 73: 1004-1011. doi: 10.1016/j.ecoenv.2010.03.009. PMID: 20399499.
Brunetti, P., L. Zanella, A. Proia, A. De Paolis, G. Falasca, M.M. Altamura, L. Sanita‘ di Toppi, P. Costantino, and M. Cardarelli. 2011. Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. Journal of Experimental Botany 62: 5509–5519. doi: 10.1093/jxb/err228. PMID: 21841172.
Brunetti, P., L. Zanella, A. De Paolis, D. Di Litta, V. Cecchetti, G. Falasca, M. Barbieri, M.M. Altamura, P. Costantino, M. Cardarelli. 2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany 66: 3815–3829. doi: 10.1093/jxb/erv185. PMID: 25900618.
Choudhury, S., and S.K. Panda. 2004. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology 30: 95–110.
Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707-1719. doi:10.1016/j.biochi.2006.07.003. PMID: 16914250.
Cosio, C., E. Martinoia, C. Keller. 2004. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology 134: 716–725. doi: 10.1104/pp.103.031948. PMID: 14730081.
Djebali, W., W. Chaibi, and M.H. Ghorbel. 2002. Croissance, activité peroxydasique et modifications ultrastructurales induites par le cadmium dans la racine de tomate. Canadian Journal of Botany 80 : 942-953. doi: 10.1055/s-2005-837696.
Djebali , W., M. Zarrouk, R. Brouquisse, S. El Kahoui, F. Liman, M.H. Ghorbel, and W. Chaïbi. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato Lycopersicon esculentum chloroplast membranes. Plant Biology 7: 258–368. doi: 10.1055/s-2005-837696. PMID: 16025408.
Eichhorn, H., M. Klinghammer, P. Becht and R. Tenhaken. 2006. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of Experimental Botany 57: 2193-2201. doi:10.1093/jxb/erj179. PMID: 16720608.
Freeman, J. L., M.W. Persans, K. Nieman, C. Albrecht, W. Peer, I.J. Pickering, and D.E. Salt. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176–2191. doi: 10.1105/tpc.104.023036. PMID: 15269333.
Freeman, J. L., D. Garcia, D. Kim, A. Hopf, and D.E. Salt. 2005. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology 137: 1082-1091. doi: 10.1104/pp.104.055293. PMID: 15734913.
Guo, B., Y.C. Liang, Y.G. Zhu, and F.J. Zhao. 2007. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution 147: 743–749. doi:10.1016/j.envpol.2006.09.007. PMID: 17084493.
Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1–11. doi: 10.1093/jexbot/53.366.1. PMID: 11741035.
Hall, J.L., and L.E. Williams. 2003. Transition metal transporters in plants. Journal of Experimental Botany 54: 2601–2613. doi: 10.1093/jxb/erg303. PMID:14585824.
Kang, J., J. Park, H. Choi, B. Burla, T. Kretzschmar, Y. Lee, and E. Martinoia. 2011. Plant ABC transporters. Arabidopsis Book 9: e0153 10.1199. doi: 10.1199/tab.0153. PMID: 3268509.
Kawano, T., and F. Bouteau. 2013. Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. Plant Cell Reports 32: 1125–1138. doi: 10.1007/s00299-013-1451-0. PMID: 23689257.
Kim D.Y., L. Bovet, M. Maeshima, E. Martinoia, Y. Lee. 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal 50: 207–218. doi: 10.1111/j.1365-313X.2007.03044.x. PMID: 17355438.
Knörzer, O. C., B. Lederer, J. Durner, and P. Böger. 1999. Antioxidative defense activation in soybean cells. Physiologia Plantarum 107: 294-302. doi: 10.1034/j.1399-3054.1999.100306.x.
Li, X., L. Ma, N. Bu, Y. Li, and L. Zhang. 2014. Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biologia Plantarum 58: 195-199. doi: 10.1007/s10535-013-0375-4.
Ma, J. F., N. Yamaji, N. Mitani, X.Y. Xu, Y.H. Su, S.P. McGrath, and F.J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences U.S.A. 105: 9931–993510. doi: 10.1073/pnas.0802361105. PMID: 18626020.
Metwally A., I. Finkemeier, M. Georgi, and K.J. Dietz. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology 132: 272-281. doi: 10.1104/pp.102.018457. PMID: 12746532.
Mishra S., G. Wellenreuther, J. Mattusch, H.J. Stärk, and H. Küpper. 2013. Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiology 163: 1396–1408. doi: 10.1104/pp.113.224303. PMID: 24058164.
Moussa, H.R., and S.M. EL-Gamal. 2010. Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum 54: 315-320. doi: 10.1007/s10535-010-0054-7.
Noctor, G., A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans, B. Marquez-Garcia, G. Queval, and C.H. Foyer. 2012. Glutathione in plants: an integrated overview. Plant, Cell and Environment 35: 454–484. doi: 10.1111/j.1365-3040.2011.02400.x. PMID: 21777251.
Oota, Y. 1975. Short-day flowering of Lamma gibba G3 induced by salicylic acid. Plant Cell Physiology 16: 1131-1135. doi: 10.12692/ijb/5.9.237-243.
Ortiz, D.F., T. Ruscitti, K.F. McCue, and D.W. Ow. 1995. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry 270: 4721–4728. doi: 10.1074/jbc.270.9.4721. PMID: 7876244.
Pál, M., G. Szalai, E. Horváth, T. Janda, and E. Páldi. 2002. Effect of salicylic acid during heavy metal stress. Acta Biologica Szegediensis 46: 119-120. Perrin, D. D. 1958. Stability of Metal Complexes with Salicylic Acid and Related Substances. Nature 182 : 741 - 742. doi: 10.1038/182741a0. PMID: 13590098.
Rao, V.M., M.P. Latha, T.S. Rao, and G.N. Rao. 2006. Mixed ligand complexes of toxic metal ions with L-glutamic acid and L-methionine in urea-water mixtures. Chemical Speciation and Bioavailability 18: 143. doi: 10.1080/09542299.2006.11073749.
Szalai, G., A. Krantev, R. Yordanova, L.P. Popova, and T. Janda. 2013. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turkish Journal of Botany 37: 708–714. doi: 10.3906/bot-1210-6.
Singh, A.P., G. Dixit, S. Mishra, S. Dwivedi, M. Tiwari, S. Mallick, V. Pandey, P.K. Trivedi, D. Chakrabarty, R.D. Tripathi. 2015. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Frontiers in Plant Science 6 : 340. doi: 10.3389/fpls.2015.00340. PMID: 26042132.
Srivastava, A. K., S. Srivastava, S. Mishra, S.F. D’Souza, and P. Suprasanna. 2014. Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics 6: 1718–1730. doi: 10.1039/c4mt00039k. PMID: 25008039.
Williams, L.E., J.K. Pittman, and J.L. Hall. 2000. Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta 1465: 104-126. doi: 10.1016/S0005-2736(00)00133-4. PMID: 10748249.
Xu, L. L., Z.Y. Fan, Y.J. Dong, J. Kong, and X.Y. Bai. 2015. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum 59: 171-182. doi: 10.1007/s10535-014-0475-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).