Cadmium stress tolerance in plants: a key role of endogenous and exogenous salicylic acid

Authors

  • Aicha Belkadhi University of Tunis El Manar http://orcid.org/0000-0001-5911-0974
  • Wahbi Djebali University of Tunis El Manar
  • Hédia Hédiji University of Tunis El Manar
  • Wided Chaïbi University of Tunis El Manar

DOI:

https://doi.org/10.14719/pst.2016.3.1.181

Keywords:

cadmium stress, endogenous salicylic acid, exogenous elicitor, phytoremediation

Abstract

Cadmium (Cd) has become one of the major metal stresses which pose a serious threat to plants and animals. In this context, endogenous and exogenous salicylic acid (SA) could play an important role in mitigating the uptake of the Cd ions and providing immunity to plants against the heavy metal stress. SA enhances the resistance capacity of contaminated plants, which, however, depends on the metal concentration and the duration of the treatment. Moreover, SA is considered as a promising signal molecule for improving the efficiency of phytoremediation, and, consequently, growing of safe crops in metal polluted areas. The recent developments in the probable mechanisms by which SA could enhance the tolerance of plants to heavy metals and how it could have an effect on phytoremediation of Cd from contaminated soils are discussed.

Downloads

Download data is not yet available.

Author Biography

Aicha Belkadhi, University of Tunis El Manar

I joined the Department of Agronomy and Plant Breeding (CSIC/Institute of Sustainable Agriculture; Prof Antonio De Haro) in a pre-doctoral training in 2010 to study the flax and Brassica carinata response to abiotic stresses. In 2011-2012, I moved to Edmonton (Canada) and started studying the mechanisms of transcription in plants in the Department of Biological Sciences/Faculty of Science (UniversityofAlberta, Prof Michael Deyholos). In 2014, I obtained my Doctorate Degree in Biological Sciences.

 

References

Agami, R.A., and G.F. Mohamed. 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and. Environmental Safety 94:164-171. doi: 10.1016/j.ecoenv.2013.04.013. PMID: 23684274.

Anjum, N. A., S.S. Gill, R. Gill, M. Hasanuzzaman, A.C. Duarte, E. Pereira, I. Ahmad, R. Tuteja R, and Tuteja N. 2014. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple and associated enzymes. Protoplasma 251: 1265–1283. doi: 10.1007/s00709-014-0636-x. PMID: 24682425.

Anjum N.A., Umar S., Aref I.M., and Iqbal M. 2015. Managing the pools of cellular redox buffers and the control of oxidative stress during the ontogeny of drought-exposed mungbean (Vigna radiata L.)-role of sulfur nutrition. Frontiers in Environmental Science 2:66. doi: 10.3389/fenvs.2014.00066.

Belkadhi, A., H. Hediji, Z. Abbes, W. Djebali, and W. Chaïbi. 2012. Influence of salicylic acid pretreatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. African Journal of Biotechnology 11: 9788-9796. doi: 10.5897/AJB11.2051.

Belkadhi, A., A. De Haro, P. Soengas, S. Obregόn, M. E. Cartea, W. Djebali, W. Chaïbi. 2013. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium. OMICS: A Journal of Integrative Biology 17(7): 398-406. doi: 10.1089/omi.2013.0030. PMID: 23758477.

Belkadhi, A., A. De Haro, P. Soengas, S. Obregόn, M. E. Cartea, W. Chaϊbi, and W. Djebali. 2014. Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). Journal of Plant Interactions 9(1): 647–654. doi: 10.1080/17429145.2014.890751.

Belkadhi A., A. De Haro, S. Obregon, W. Chaϊbi, W. Djebali. 2015. Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environmental Science and Pollution Research 22 (2): 1457-1467. doi: 10.1007/s11356-014-3475-6. PMID: 25163565.

Belkadhi A., A. De Haro, S. Obregon, W. Chaϊbi, and W. Djebali. 2015. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.). Ecotoxicology and Environmental Safety 120: 102-109. doi: 10.1016/j.ecoenv.2015.05.028. PMID: 26057076.

Belkhadi, A., H. Hediji, Z. Abbes, I. Nouairi, Z. Barhoumi, M. Zarrouk, W. Chaïbi, and W. Djebali. 2010. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety 73: 1004-1011. doi: 10.1016/j.ecoenv.2015.05.028. PMID: 26057076.

Choudhury, S., and S.K. Panda. 2004. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology 30: 95–110.

Cui, W., L. Li, Z.Z. Gao, H.H. Wu, Y. Xie, and W. Shen. 2012. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. Journal of Experimental Botany 63: 5521–5534. doi: 10.1093/jxb/ers201. PMID: 22915740.

Djebali , W., M. Zarrouk, R. Brouquisse, S. El Kahoui, F. Liman, M.H. Ghorbel, and W. Chaïbi. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato Lycopersicon esculentum chloroplast membranes. Plant Biology 7: 258–368. doi: 10.1055/s-2005-837696. PMID: 16025408.

Djebali, W., P. Gallusci, C. Polge, L. Boulila, N. Galtier, P. Raymond, W. Chaibi, and R. Brouquisse. 2008. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato Solanum lycopersicum L. plants. Planta 227: 625-639. doi: 10.1007/s00425-007-0644-6. PMID: 17952456.

Drazic, G., and N. Mihailovic. 2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant science 168: 511-517. doi: 10.1104/pp.102.018457. PMID: 166972.

Drazic, G., N. Mihailovic, and M. Lojic. 2006. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biologia Plantarum 50: 239–244. doi: 10.1007/s10535-006-0013-5.

Gharib, F.A., A.Z. Hegazi. 2010. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science 6(10): 675-683. doi: 10.3389/fpls.2015.00462. PMID: 4485163.

Guan, C., J. Ji, C. Jia, W. Guan, X. Li, C. Jin, and G. Wang. 2015. A GSHS-like gene from Lycium chinense maybe regulated by cadmium induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Reports 34: 871–884. doi: 10.1007/s00299-015-1750-8. PMID: 25627256.

Guo, B., Y.C. Liang, Y.G. Zhu, and F.J. Zhao. 2007. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution 147: 743–749. doi:10.1016/j.envpol.2006.09.007. PMID: 17084493.

Guo, Q., L. Meng, P.C. Mao, Y.Q. Jia, and Y.J. Shi. 2013. Role of exogenous salicylic acid in alleviating cadmium-induced toxicity in Kentucky bluegrass. Biochemical Systematics and Ecology 50: 269–276. doi:10.1016/j.bse.2013.05.002.

Gururani, M.A., J. Venkatesh, M. Ganesan, R.J. Strasser, Y. Han, J.I. Kim, H.I. Lee, and P.S. Song. 2015. In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS ONE 10: e0127200. doi: 10.1371/journal.pone.0127200. PMID: 4444231.

Halimaa, P., D. Blande, M.G. Aarts, M. Tuomainen, A. Tervahauta, and S. Kärenlampi. 2014. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens. Frontiers in Plant Science 5: 213. doi: 10.3389/fpls.2014.00213. PMID: 4033236.

Hara, M., J. Furukawa, A. Sato, T. Mizoguchi, and K. Miura. 2012. Abiotic stress and role of salicylic acid in plants. In: Ahmad P, Parsad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science, New York, 235–251. doi: 10.1007/978-1-4614-0634-1_13.

Horvath, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26: 290–300. doi: 10.3389/fpls.2015.00462. PMID: 4485163.

Jayanthy, V., R. Geetha, R. Rajendran, P. Prabhavathi, S. Karthik Sundaram, S. Dinesh Kumar, and P. Santhanam. 2014. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil. Saudi Journal Biological Sciences 21(4): 324-333. doi: 10.1016/j.sjbs.2013.12.001. PMID: 25183943.

Jin, X., X. Yang, E. Islam, D. Liu, and Q. Mahmood. 2008. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials 156 (1–3): 387–397. doi: 10.1016/j.jhazmat.2007.12.064. PMID: 18242844.

Kang, G., G. Li, and T. Guo. 2014. Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiologiae Plantarum 36: 2287–2297. doi: 10.1007/s11738-014-1603-z.

Khan, N. A., R. Nazar, N. Iqbal, and N.A. Anjum. 2012. Phytohormones and Abiotic Stress Tolerance in Plants. Berlin: Springer. doi: 10.1007/978-3-642-25829-9.

Khan, M.I.R., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462. doi: 10.3389/fpls.2015.00462. PMID: 4485163.

Koç, E., Üstün, A.S., and N. Çelik. 2013. Effect of exogenously applied salicylic acid on cadmium chloride-induced oxidative stress and nitrogen metabolism in tomato (Lycopersicon esculentum L.). Turkish Journal of Biology 37: 361–369. doi: 10.3906/biy-1211-13.

Kováčik, J., B. Klejdus, J. Hedbavny, and M. Bačkor. 2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18: 544–554. doi: 10.1007/s10646-009-0312-7. PMID: 19381803.

Kovács, V., O.K. Gondor, G. Szalai, I. Majláth, T. Janda and M. Pál. 2014. UV-B radiation modifies the acclimation processes to drought or cadmium in wheat. Environmental and Experimental Botany 100: 122–131. doi:10.1016/j.envexpbot.2013.12.019.

Krantev, A., R. Yordanova, T. Janda, G. Szalai, L. and Popova. 2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165: 920-931. doi:10.1016/j.jplph.2006.11.014. PMID: 17913285.

Li, X., L. Ma, N. Bu, Y. Li, and L. Zhang. 2014. Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biologia Plantarum 58: 195-199. doi: 10.1007/s10535-013-0375-4.

Lu, H., D.N. Rate, J.T. Song, and J.T. Greenberg. 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15: 2408-2420. doi: 10.​1105/​tpc.​015412. PMID: 14507999.

Metwally, A., I. Finkemeier, M. Georgi, and K.J. Dietz. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology 132 : 272-281. doi: 10.​1104/​pp.​102.​018457. PMID: 12746532.

Mikolajczyk, M., O.S. Awotunde, G. Muszynska, D.F. Klessig, and G. Dobrowolska. 2000. Osmotic stress induced rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12: 165–178. doi: 10.1105/tpc.12.1.165. PMID: 149182.

Nawrath, C., S. Heck, N. Parinthawong, and J.P. Metraux. 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–86. doi: 10.1105/tpc.010376. PMID: 150564.

Noctor, G., A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans, B. Marquez-Garcia, G. Queval, and C.H. Foyer. 2012. Glutathione in plants: an integrated overview. Plant Cell and Environment 35: 454–484. doi: 10.1111/j.1365-3040.2011.02400.x. PMID: 21777251.

Pál, M., E. Horváth, T. Janda, E. Páldi, and G. Szalai. 2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science 169: 239– 246. doi: 10.1002/jpln.200520573.

Panda, S.K., and Patra HK. 2007. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiologiae Plantarum 29: 567–575. doi: 10.1007/s11738-007-0069-7.

Radwan, D.E.M. 2012. Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology 102: 182-188. doi:10.1016/j.pestbp.2012.01.002.

Rivas-San Vicente, M., and J. Plasencia. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62: 3321–38. doi: 10.1093/jxb/err031. PMID: 21357767.

Rodriguez-Serrano, M., M.C. Romero-Puertas, G.M. Pastori, F.J. Corpas, L.M. Sandalio, L.A. Del Rio, and J.M. Palma. 2007. Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. Journal of Experimental Botany 58: 2417–2427. doi: 10.1093/jxb/erm095. PMID: 17545229.

Sappl, P.G., L. Onate-Sanchez, K.B. Singh, and A.H. Millar. 2004. Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Molecular Biology 54: 205–219.

doi: 10.1023/B:PLAN.0000028786.57439.b3. PMID: 15159623.

Shah, J., and D.F. Klessig. 1999. Salicylic acid: signal perception and transduction. In: Hooykaas, P.J.J., M.A. Hall, K.R. Libbenga, eds. Biochemistry and molecular biology of plant hormones. Amsterdam: Elsevier Science Publications 513–541. doi: 10.1016/S0167-7306(08)60503-7.

Shakirova, F.M., C.R. Allagulova, D.R. Maslennikova, E.O. Klyuchnikova, A.M. Avalbaev, and M.V. Bezrukova. 2016. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and Experimental Botany 122: 19–28. doi:10.1016/j.envexpbot.2015.08.002.

Shi, G.R., Q.S. Cai, Q.Q. Liu, and L. Wu. 2009. Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum 31: 969–977. doi: 10.1007/s11738-009-0312-5.

Shi, Q., and Z. Zhu. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany 63: 317–326. doi:10.1016/j.envexpbot.2007.11.003.

Shirasu, K., H. Nakajima, V.K. Rajasekhar, R.A. Dixon, and C. Lamb. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 1-10. doi: 10.1105/tpc.9.2.261. PMID: 9061956.

Sing, I., and K. Shah. 2015. Evidences for suppression of cadmium induced oxidative stress in presence of sulphosalicylic acid in rice seedlings. Plant Growth Regulation 76: 99–110. doi: 10.1007/s10725-015-0023-4.

Singer, A.C., D.E. Crowley, and I.P. Thompson. 2003. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnology 21: 123. doi: 10.1016/S0167-7799 (02)00041-0. PMID: 12628369.

Sinha, S., and S.K. Mukherjee. 2008. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology 56: 55–60. doi: 10.1007/s00284-007-9038-z. PMID: 17899260.

Tao, S., L. Sun, C. Ma, L. Li, G. Li, and L. Hao. 2013. Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant and Soil 372: 309–318. doi: 10.1007/s11104-013-1749-2.

Tamas, L.., B. Bočová, J. Huttová, L. Liptáková, I. Mistrík, K. Valentovičová, and V. Zelinová 2012. Impact of the auxin signaling inhibitor p-chlorophenoxyisobutyric acid on short-term Cd-induced hydrogen peroxide production and growth response in barley root tip. Journal of Plant Physiology 169 : 1375–1381. doi: 10.1016/j.jplph.2012.05.023. PMID: 22795748.

Tamas, L., I. Mistrik, A. Alemayehu, V. Zelinova, B. Bocova, and J. Huttova. 2015. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. Journal of Plant Physiology 173 : 1–8. doi: 10.1016/j.jplph.2014.08.018. PMID: 25462072.

Vlot, A.C., D.M.A. Dempsey, and D.F. Klessig. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47: 177-206. doi: 10.1146/annurev.phyto.050908.135202. PMID: 19400653.

Xu, E., and M. Brosché. 2014. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biology 14:155. doi: 10.1186/1471-2229-14-155. PMID: 24898702.

Xu, L. L., Z.Y. Fan, Y.J. Dong, J. Kong, and X.Y. Bai. 2015. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum 59: 171-182. doi: 10.1007/s10535-014-0475-9.

Yan, S., and X. Dong. 2014. Perception of the plant immune signal salicylic acid. Current Opinion of Plant Biology 20: 64–68. doi: 10.1016/j.pbi.2014.04.006. PMID: 24840293.

Zawoznik, M., M.D. Groppa, M.L. Tomaro, and M.P. Benavides 2007. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science 173: 190–197. doi:10.1016/j.plantsci.2007.05.004.

Zhang, W.N., and W.L. Chen. 2011. Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochemical and Photobiological sciences 10: 947-955. doi: 10.1039/c0pp00305k. PMID: 21336371.

Zhang, F., H. Zhang, Y. Xia, G. Wang, L. Xu, and Z. Shen. 2011. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Reports 30: 1475–1483. doi: 10.1007/s00299-011-1056-4. PMID: 21409549.

Zhang, Y., S. Xu, S. Yang, and Y. Chen. 2015. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through up-regulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252: 911–924. doi: 10.1007/s00709-014-0732-y. PMID: 25398649.

Zhao, C.R., T. Ikka, Y. Sawaki, Y. Kobayashi, Y. Suzuki, T. Hibino, S. Sato, N. Sakurai, D. Shibata, and H. Koyama. 2009. Comparative transcriptomic characterization of aluminium, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana. BMC Plant Biology 9: 32. doi: 10.1186/1471-2229-9-32. PMID: 19309492.

Downloads

Published

18-02-2016

How to Cite

1.
Belkadhi A, Djebali W, Hédiji H, Chaïbi W. Cadmium stress tolerance in plants: a key role of endogenous and exogenous salicylic acid. Plant Sci. Today [Internet]. 2016 Feb. 18 [cited 2024 Nov. 24];3(1):48-54. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/181

Issue

Section

Review Articles