Abiotic stress tolerance in mangroves with a special reference to salinity
DOI:
https://doi.org/10.14719/pst.1925Keywords:
Abiotic stress, Environmental pollutant, Mangroves, Salinity toleranceAbstract
Since mangroves are found near extremely transitional ecosystems, they face a lot of physico-chemical perturbations. As mangroves possess a unique ecotone, they experience many abiotic stressors viz. salinity, metal, oil, humidity temperature, nutrient and a wide range of biotic interactions. Amongst all, salinity is the most important factor affecting mangrove physiology and biochemistry, and thereby regulating the organic matter contribution to the consumers underneath. Exploitation by human, being a dominant biotic interference, is above the rate at which natural replacement of mangrove vegetation occur. Mal-nutrition is a limiting factor in growth and reproduction of many mangroves whereas nutrient replenishment reduces the phytotoxicity of heavy metals. Different environmental pollutants including heavy metals, recalcitrant, cosmetics, petroleum oil and endocrine disrupters have reported impact on various mangroves and associated biota. Stress tolerance in mangroves involves various mechanism including morphological and anatomical features, osmoregulation, water use efficiency, salt secretion, salt exclusion and salt accumulation and molecular regulations. Various aspects of salt tolerance strategies of mangroves related to their growth, biochemical anatomy and physiology were reported by many researchers.
Downloads
References
Gibbs HK, Brown S, Niles JO, Foley JA. Monitoring and estimating tropical forest carbon stocks, making REDD a reality. Environ Res Lett. 2007;2:045023. https://doi.org/0.1088/1748-9326/2/4/045023
Li DL, Li XM, Peng ZY, Wang BG. Flavanol derivatives from Rhizophora stylosa and their DPPH radical scavenging activity. Molecules. 2007;12:1163-69. https://doi.org/10.3390/12051163
Han L, Huang X, Dahse HM, Moellmann U, Fu H, Grabley S, Sattler I, Lin W. unusal napthoquinone derivatives from the twigs of Avicennia marina. J Nat Prod. 2007;70:923-27. https://doi.org/10.1021/np060587g
Patra JK, Panigrahi TK, Rath SK, Dhal NK, Thatoi HN. Phytochemical screening and antimicrobial assessment of leaf extracts of Bhitarkanika, Orissa, Indian Adv Nat Appl Sci. 2009;3:241-46.
Acharya S, Patra DK, Pradhan C, Mohapatra PK. Anti-bacterial, anti-fungal and anti-oxidative properties of different extracts of Bruguiera gymnorrhiza L. (Mangrove). Eur J Int Med. 2020;36:101140. https://doi.org/10.1016/j.eujim.2020.101140
Rodrigues CS, Souza SS, Rezende RP, Silva A, Andrioli JL, Costa H et al. Application of denaturing gradient gel electrophoresis for detection of bacterial and yeast communities along a salinity gradient in the estuary of the Cachoeira River in Brazil. Genet Mol Res. 2013;12:1752-60. http://dx.doi.org/10.4238/2013.May.21.6
Bastami A, Kazemzadeh KJ, Esmailian M. Bioaccumulation of heavy metals in sediment and crab, Portunus pelagicus from the Persian Gulf, Iran. Mid-East J Sci Res. 2012;12:886-92.
Gan WQ, McLean K, Brauer M. Modeling population exposure to comm https://doi.org/10.1016/j.envres.2012.04.001unity noise and air pollution in a large metropolitan area. Environ Res. 2012;116:11-16. https://doi.org/10.1016/j.envres.2012.04.001
Duke NC, Ball MC, Ellison JC. Factors influencing biodiversity and distributional gradients in mangroves. Globoal Ecol Biogeogr. 1998;7:27-47. https://doi.org/10.1111/j.1466-8238.1998.00269.x
Zhang K, Liu H, Li Y, Xu H, Shen J, Rhome J et al. The role of mangroves in attenuating storm surges, Estuar. Coast Shelf S. 2012;102:11-23. https://doi.org/10.1016/j.ecss.2012.02.021
Acharya S, Patra DK, Mahalik G, Mohapatra PK. Quantitative ecological study of Rhizophoraceae mangroves of Bhitarkanika Wildlife Sanctuary regions of Odisha coast, India. Proc Natl Acad Sci India Sect B Biol Sci. 2021;91(4):897-908. https://doi.org/10.1007/s40011-021-01295-2
Cui Y, Zhang LJ, Luo XX, Zhang X. Study on the water pollution and eutrophication in the Xiaoqing River Estuary. J Ocean U China. 2013;43:60-66.
Krauss KW, Ball MC. On the halophytic nature of mangroves. Tree. 2013;27:7-11. https://doi.org/10.1007/s00468-012-0767-7
Kathiresan K, Rajendran N. Coastal mangrove forests mitigated tsunami. Estuar Coast Shelf Sci. 2005;65(3):601-06. https://doi.org/10.1016/j.ecss.2005.06.022
Parida AK, Jha B. Salt tolerance mechanisms in mangroves: a review. Trees. 2010;24:199-217. https://doi.org/10.1007/s00468-010-0417-x
Hossain MD, Inafuku M, Iwasaki H, Taira N, Mostofa MG, Oku H. Differential enzymatic defense mechanisms in leaves and roots of two true mangrove species under long-term salt stress. Aquatic Botany. 2017;142:32-40. https://doi.org/10.1016/j.aquabot.2017.06.004
Murdiyarso D, Purbopuspito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Chang. 2015;5(12):1089-92. https://doi.org/10.1038/nclimate2734
Global Mangrove Alliance, 2018. Goals and Objectives. Global Mangrove Alliance, Washington DC. https://www.mangrovealliance.org/about/
Friess DA, Rogers K, Lovelock CE, Krauss KW, Hamilton SE, Lee SY et al. The State of the World’s Mangrove Forests: past, present and Future. Annu Rev Environ Resour. 2019;44(1):89-115. https://doi.org/10.1146/annurev-environ-101718-033302
Lewis RR. Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng. 2005;24(4):403-18. https://doi.org/10.1016/j.ecoleng.2004.10.003
Friess DA, Krauss KW, Horstman EM, Balke T, Bouma TJ, Galli D, Webb EL. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol Rev. 2012;87(2):346-66. https://doi.org/10.1111/j.1469-185X.2011.00198.x
Asaeda T, Barnuevo A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. Forest Ecology and Management. 2019;432:73-82. https://doi.org/10.1016/j.foreco.2018.09.015
Duke NC, Ying Lo, EY, Sun M. Global distribution and genetic discontinuities of mangroves ? emerging patterns in the evolution of Rhizophora. Trees. 2002;16:65-79. https://doi.org/10.1007/s00468-001-0141-7
Sakthivel K. Survey of molluscs in Killai backwaters of South India. Indian J Ecol. 2020;47:190-95.
Manson FJ, Loneragan NR, Skilleter GA, Phinn SR. An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions. Oceanogra Mar Biol Annu Rev. 2005;43:483-513. https://doi.org/10.1201/9781420037449
Selvam PP, Geevarghese GA, Ramachandran P, Ramachandran R. Spatial assessment of net canopy photosynthetic rate and species diversity in Pichavaram mangrove forest, Tamil Nadu. Indian J Ecol. 2018;45:717-23.
Alimov AF. Theory of ecosystem functioning: application to esturine ecology. Abstracts of the symposium ECSA42 “Estuarine ecosystem: structure, functional management.” Svetlogorsk, Russia. 2007; p. 8-9.
Pickens CN, Sloey TM, Hester MW. Influence of salt marsh canopy on black mangrove (Avicennia germinans) survival and establishment at its northern latitudinal limit. Hydrobiologia. 2019;826:195-208. https://doi.org/10.1007/s10750-018-3730-9
Björkman O, Demmig B, Andrews TJ. Mangrove photosynthesis: response to high-irradiance stress. Aust J Plant Physiol. 1988;15:43-61. https://doi.org/10.1071/PP9880043
Cheeseman JM, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG. The analysis of photosynthetic performance in leaves under field conditions: a case study using Bruguiera mangroves. Photosynthesis Research. 1991;29:11-22. https://doi.org/10.1007/BF00035202
Asaeda T, Barnuevo A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. Ecol Manag. 2019;432:73-82. https://doi.org/10.1016/j.foreco.2018.09.015
Rout P, Kumar Mohapatra P, Chand Basak U. Ex vitro multiple shoot regeneration potential of hypocotyls of four Rhizophoraceae mangroves. Sci Agr. 2016;14:210-15. https://doi.org/0.15192/PSCP.SA.2016.14.1.210215
Clarke LD, Hannon NJ. The mangrove swamp and salt marsh communities of the Sydney district III. Plant growth in relation to salinity and water logging. J Ecol. 1970;58:351-69. https://doi.org/10.2307/2258276
Naidoo G. Effects of nitrate, ammonium and salinity on growth of the mangrove Bruguiera gymnorrhiza (L.) Lam. Aquat Bot. 1990;38:209-19. https://doi.org/10.1016/0304-3770(90)90006-7
Werner A, Stelzer R. Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant Cell Environ. 1990;13:243-55. https://doi.org/10.1111/j.1365-3040.1990.tb01309.x
Khan MA, Aziz I. Salinity tolerance in some mangrove species from Pakistan. Wetl Ecol Manag. 2001;9:219-23. https://doi.org/10.1023/A:1011112908069
Ashraf M, Harris PJC. Photosynthesis under stressful environment. Photosynthetica. 2013;51:163-90. https://doi.org/10.1007/s11099-013-0021-6
McMillan C. Environmental factors affecting seedling establishment of the black mangrove on the central Texas Coast. Ecology. 1971;52:927-30. https://doi.org/10.2307/1936046
Chen Y, Ye Y. Effects of salinity and nutrient addition on mangrove Excoecaria agallocha. PLoS ONE. 2014;9. https://doi.org/10.1371/journal.pone.0093337
Aziz I, Khan MA. Physiological adaptations to seawater concentration in Avicennia marina from Indus delta, Pakistan. Pak J Bot. 2000;32:171-89.
Ma D, Song S, Wei L, Ding Q, Zheng HL. Comparative transcriptome analysis on the mangrove Acanthus ilicifolius and its two terrestrial relatives provides insights into adaptation to intertidal habitats. Gene. 2022;839:146730. https://doi.org/10.1016/j.gene.2022.146730
Meera SP, Augustine A. De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves. Plant Physiol Biochem. 2020;155:683-96. https://doi.org/10.1016/j.plaphy.2020.08.008
Patel NT, Gupta A, Pandey AN. Salinity tolerance of Avicennia marina (Forssk.) Vierh. from Gujarat coasts of India. Aquat Bot. 2010;93:9-16. https://doi.org/10.1016/j.aquabot.2010.02.002
Manikandan T, Neelkandan T, Usha Rani. Effect of salinity on the growth, photosynthesis and mineral constituents of the mangrove Rhizophora apiculata L. seedlings, Recent Res Sci Technol. 2009;1:134-41.
Reef R, Feller IC, Lovelock CE. Nutrition in mangroves, Tree Physiol. 2010;30:1148-60. https://doi.org/10.1093/treephys/tpq048
Cheng H, Wang YS, Ye ZH, Chen DT, Wang YT et al. Influence of N deficiency and salinity on metal (Pb, Zn and Cu) accumulation and tolerance by Rhizophora stylosa in relation to root anatomy and permeability. Environ Pollut. 2012;164:110-17. https://doi.org/10.1016/j.envpol.2012.01.034
Yates EJ, Ashwath N, Midmore DJ. Responses to nitrogen, phosphorus, potassium and sodium chloride by three mangrove species in pot culture. Trees. 2002;16:120-25. https://doi.org/10.1007/s00468-001-0145-3
Kao WY, Tsai HC, Tsai TT. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel (L.) Druce. J Plant Physiol. 2001;158:841-46. https://doi.org/10.1078/0176-1617-00248
Shi GR, Cai QS, Liu CF, Wu L. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. J Plant Growth Regul. 2010;61:45-52. https://doi.org/10.1007/s10725-010-9447-z
Ye Y, Tam NF, Wong YS, Lu CY. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ Exp Bot. 2003;49(3):209-21. https://doi.org/10.1016/S0098-8472(02)00071-0
Youssef T, Saenger P. Anatomical adaptive strategies and rhizosphere oxidation in mangrove seedlings. Aust J Bot. 1996;44:297-313. https://doi.org/10.1071/BT9960297
Ashraf M, Yasmin H. Differential waterlogging tolerance in three grasses of contrasting habitats: Aeluropus lagopoides (L.) Trin., Cynodon dactylon (L.) Pers. and Leptochloa fusca (L.) Kunth. Environ Exp Bot. 1991;31:437-46. https://doi.org/10.1016/0098-8472(91)90042-M
McKevlin MR, Hook DD, McKee JWH. Growth and nutrient use efficiency of water tupelo seedlings in flooded and well-drained soil. Tree Physiol. 1995;15:753-58.
Xiao Y, Wang W, Chen L. Stem anatomical variations in seedlings of the mangrove Bruguiera gymnorrhiza grown under periodical waterlogging. Flora: Morphol Distrib Funct Ecol Plants. 2010;205(8):499-505. https://doi.org/10.1016/j.flora.2009.12.004
Xiao Y, Jie Z, Wang M, Lin G, Wang W. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aqa Bot. 2009;91(3):231-37. https://doi.org/10.1016/j.aquabot.2009.07.001
Chen Y, Ye Y. Effects of salinity and nutrient addition on mangrove Excoecaria agallocha. PLoS ONE 2014;9. https://doi.org/10.1371/journal.pone.0093337
Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC. Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ. 2006;29:793-802. https://doi.org/10.1111/j.1365-3040.2005.01446.x
Xin K, Huang X, Hu JL, Li C, Yang XB, Arndt SK. Land use change impacts on heavy metal sedimentation in mangrove wetlands-a case study in Dongzhai Harbor of Hainan, China. Wetlands. 2014;34:1-8. https://doi.org/10.1007/s13157-013-0472-3
Naser HA. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull. 2013;72:6-13. https://doi.org/10.1016/j.marpolbul.2013.04.030
Sari I, Din ZB. Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl. Chem Ecol. 2012;28:365-74. https://doi.org/10.1080/02757540.2012.666526
Zan Q, Wang Y, Wang B. Accumulation and cycle of heavy metals in Sonneratia apetala and S. caseolaris mangrove community at Futian of Shenzhen, China. Env Sci. 2002;23:81-88.
Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C. Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation, Ecotoxicol Environ Saf. 2017;139:272-79. https://doi.org/10.1016/j.ecoenv.2017.01.017
Chauhan R, Ramanathan AL. Evaluation of water quality of Bhitarkanika mangrove system, Orissa. Indian J Mar Sci. 2008;37:153-58.
Panda SP, Subudhi H, Patra HK. Mangrove forest of river estuaries of Odisha. India Int J Biodivers Conserv. 2013;5:446-54. https://doi.org/10.5897/IJBC12.004
Page DS, Gilfillan ES, Foster JC, Hotham JR, Gonzalez L. Mangrove leaf tissue sodium and potassium ion concentrations as sublethal indicators of oil stress in mangrove trees. In: Proceedings of the 1985 International Oil Spill Conference. Los Angeles, California, American Petroleum Institute, Washington, DC; 1985. p. 391-93. https://doi.org/10.7901/2169-3358-1985-1-391
Paliyavuth C, Clough B, Patanaponpaiboon P. Salt uptake and shoot water relations in mangroves. Aquat Bot. 2004;78:349-60. https://doi.org/10.1016/j.aquabot.2004.01.002
Mills MA, Bonner JS, Page CA, Autenrieth RL. Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull. 2004;49:425-35. https://doi.org/10.1016/j.marpolbul.2004.02.027
Ke L, Zhang C, Wong YS, Tam NFY. Dose and accumulative effects of spent lubricating oil on four common mangrove plants in South China. Eco Toxol Environ Saf. 2011;74:55-66. https://doi.org/10.1016/j.ecoenv.2010.09.011
Tian Y, Liu HJ, Zheng TL, Kwon KK, Kim SJ, Yan C. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China. Mar Pollut Bull. 2008;57:707-15. https://doi.org/10.1016/j.ecoenv.2010.09.011
Tomlinson PB. Responses of two mangrove species, Aegiceras corniculatm and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol. 1986;74:1-6.
Saintilan N. Above and below ground biomasses of two patterns of biomass and ANPP in a mangrove ecosystem species of mangrove on the Hawkesbury River estuary, New South Wales. Mar Fresh water Res. 1997;48:147-52. https://doi.org/10.1071/MF96079
Krauss KW, Lovelock CE, McKee KL, Hoffman LL, Ewe SML. Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review. Aquat Bot. 2008;89:105-27. https://doi.org/10.1016/j.aquabot.2007.12.014
Biebl R, Kinzel H. Blattbau and Salzhaushalt von Laguncularia racemosa (L.) Gaertn. under Mangroven Blume auf Puerto Rico. Oesterreichische Botanische Zeitschrift. 1965;112:56-93. https://www.jstor.org/stable/43339272 https://doi.org/10.1007/BF01372978
Kemis JR. Petiolar glands in Combretaceae: new observations and an anatomical description of the extra-floral nectar of buttonwood (Conocarpus erectus). Am J Bot. 1984;71:34.
Yan L, Guizhu C. Physiological adaptability of three mangrove species to salt stress. Acta Ecologica Sinica. 2007;27:2208-14. https://doi.org/10.1016/S1872-2032(07)60052-3
Lv X, Li D, Yang X, Zhang M, Deng Q. Leaf enzyme and plant productivity responses to environmental stress associated with sea level rise in two Asian mangrove species. Forests. 2019;10:250. https://doi.org/10.3390/f10030250
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Physiol. 2008;59:651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Munns R. Plant adaptations to salt and water stress: differences and commonalities. In: Turkan, I. (ed) Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era. Advances in Botanical Research; 2011;57; Academic, London; p. 1-32. https://doi.org/10.1016/B978-0-12-387692-8.00001-1
Kefu Z, Munns R, King RW. Abscisic acid levels in NaCl-treated barley, cotton and salt bush. Aust J Plant Physiol. 1991;18:17-24. https://doi.org/10.1071/PP9910017
Krishnamurthy P, Mohanty B, Wijaya E, Lee DY, Lim TM et al. Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep. 2017;7:10031. https://doi.org/10.1038/s41598-017-10730-2
Su W, Ye C, Zhang Y, Hao S, Li QQ. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. Sci Total Environ. 2019;681:191-201. https://doi.org/10.1016/j.scitotenv.2019.05.127
Wang WQ, Ke L, Tam NFY, Wong YS. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar Biol. 2002;141:1029-34. https://doi.org/10.1007/s00227-002-0951-1
Li LQ, Ding ZH, Liu JL, Lin HN, Wu H. Distribution of heavy metals in surficial sediments from main mangrove wetlands of China and their influence factors. Acta Oceanologica Sinica. 2008;30:159-64.
Parida AK, Mittra B, Das AB, Das TK, Mohanty P. High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. Planta. 2005;221:135-40. https://doi.org/10.1007/s00425-004-1415-2
Akram NA, Ashraf M. Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochemica. 2011;55:94-104.
Vovides AG, Juliane V, Armin K, Uta B, Uwe G, Peters R et al. Morphological plasticity in mangrove trees: salinity-related changes in the allometry of Avicennia germinans. Trees. 2014;28:1413-25. https://doi.org/10.1007/s00468-014-1044-8
Sugihar K, Hanagata N, Dubinsky Z, Baba S, Karube I. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol. 2000;41:1279-85. https://doi.org/10.1093/pcp/pcd061
Yamada A, Saitoh T, Mimura T, Ozeki Y. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast and tobacco cells. Plant Cell Physiol. 2002;43:903-10. https://doi.org/10.1093/pcp/pcf108
Parida AK, Das AB, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora. Trees-Struct Funct. 2004;18:167-74. https://doi.org/10.1007/s00468-003-0293-8
Patra DK, Pradhan C, Patra HK. Chromium bioaccumulation, oxidative stress metabolism and oil content in lemon grass Cymbopogon flexuosus (Nees ex Steud.) W. Watson grown in chromium rich over burden soil of Sukinda chromite mine, India. Chemosphere.2019;218:1082-88. https://doi.org/10.1016/j.chemosphere.2018.11.211
Feng X, Xu S, Li J, Yang Y, Chen Q, Lyu H, Zhong C, He Z, Shi S. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biol. 2020;20:178. https://doi.org/10.1186/s12870-020-02395-3
He Z, Xu S, Zhang Z, Guo W, Lyu H, Zhong C et al. The International Mangrove Consortium and Shi, S. Convergent adaptation of the genomes of woody plants at the land–sea interface. Natl Sci Rev. 2020;7:978-93. https://doi.org/10.1093/nsr/nwaa027
Lyu H, He Z, Wu CI, Shi S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 2018;217:428-38. https://doi.org/10.1111/nph.14784
Xu S, Wang J, Guo Z, He Z, Shi S. Genomic convergence in the adaptation to extreme environments. Plant Comm. 2020;1:100117. https://doi.org/10.1016/j.xplc.2020.100117
Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications. Chem Rev. 2016;116:3029-85. https://doi.org/10.1021/acs.chemrev.5b00407
Prashanth SR, Sadhasivam V, Parida A. Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res. 2008;17:281-91. https://doi.org/10.1007/s11248-007-9099-6
Wang L, Pan D, Lv X, Cheng C-L, Li J, Liang W et al. A multilevel investigation to discover why Kandelia candel thrives in high salinity. Plant Cell Environ. 2016;39:2486-97. https://doi.org/10.1111/pce.12804
Yang Y, Li J, Yang S, Li X, Fang L, Zhong C et al. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evol Biol. 2017;17:22. https://doi.org/10.1186/s12862-016-0849-z
Kumar S, Trivedi PK. Glutathione S Transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. 2018;9:751. https://doi.org/10.3389/fpls.2018.00751
Janicka-Russak M, Kaba?a K. The role of plasma membrane H+-ATPase in salinity stress of plants. In: Progress in Botany, U. Luttge and W. Beyschlag, (eds.) (Springer International Publishing); p. 2015. 77-92. https://doi.org/10.1007/978-3-319-08807-5_3
Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, et al. Rapid increase of vacuolar volume in response to salt stress. Planta. 2003;216:397-402. https://doi.org/10.1007/s00425-002-0878-2
Hibino T, Meng YL, Kawamitsu Y, Uehara N, et al. Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.)Vierh. Plant Mol Biol. 2001;45:353-63. https://doi.org/10.1023/A:1006497113323
Fu X, Huang Y, Deng S, Zhou R, Yang G, Ni X et al. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci. 2005;169:147-54. https://doi.org/10.1016/j.plantsci.2005.03.009
Xiao X, Hong Y, Xia W, Feng S et al. Transcriptome analysis of Ceriops tagal in saline environments using RNA-sequencing. PLoS One. 2016;11:e0167551. https://doi.org/10.1371/journal.pone.0167551
Wong YY, Ho CL, Nguyen PD, Teo SS et al. Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquat Bot. 2007;86:117-22. https://doi.org/10.1016/j.aquabot.2006.09.009
Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J et al. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant Cell Environ. 2014;37:1656-71. https://doi.org/10.1111/pce.12272
Evans DE. Aerenchyma formation. New Phytol. 2004;161:35-49. https://doi.org/10.1046/j.1469-8137.2003.00907.x
Hao S, Su W, Li QQ. Adaptive roots of mangrove Avicennia marina: structure and gene expressions analyses of pneumatophores. Sci Total Environ. 2021;757:143994. https://doi.org/10.1016/j.scitotenv.2020.143994
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulator of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064-68. https://doi.org/10.1126/science.1172408
Wang F, Wu Q, Zhang Z, Chen S, Zhou R. Cloning, expression and characterization of iron superoxide dismutase in Sonneratia alba, a highly salt tolerant mangrove tree. Protein J. 2013;32:259-65. https://doi.org/10.1007/s10930-013-9482-5
Chen J, Xiao Q, Wu F, Dong X et al. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol. 2010;30:1570-85. https://doi.org/10.1093/treephys/tpq086
Hong L, Su W, Zhang Y, Ye C, Shen Y, Li QQ. Transcriptome profiling during mangrove viviparity in response to abscisic acid. Sci Rep. 2018;8:770. https://doi.org/10.1038/s41598-018-19236-x
Downloads
Published
Versions
- 01-04-2023 (2)
- 11-01-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Srinivas Acharya, Madhusmita Pradhan, Gyanranjan Mahalik, Ram Babu, Sangeeta Parida, Pradipta Kumar Mohapatra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).