Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 3 (2023)

Structure, development and histochemistry of embryo and endosperm in Sesbania speciosa Taub. Ex Engl.

DOI
https://doi.org/10.14719/pst.1930
Submitted
6 June 2022
Published
13-04-2023 — Updated on 01-07-2023
Versions

Abstract

Sesbania speciosa Taub. ex Engl. is an introduced plant cultivated in India for fibre, green manure and nutraceutical potential. The development and histochemistry of the endosperm and embryo of this plant have not been yet at all reported and the present study was carried out in an effort to bridge that gap in our knowledge. Two-micrometer sections of seeds of S. speciosa at various stages of development were cut on a rotary microtome. DNA, ribonucleic acid and insoluble polysaccharides were found to be locally localized. It was observed that the ovule of the Sesbania speciosa is campylotropous bitegmic and crassinucellate and the embryo sac is a 7-celled structure. The synergids possess PAS-positive filiform apparatus. All the cells of the mature embryo sac, before fertilization is bereft of polysaccharide grains. The embryo proper, during early embryogenesis, contains a high concentration of proteins and nucleic acids but lacks polysaccharide grains. At the dicotyledonous embryo stage, the concentration of proteins and nucleic acids declines and is followed by the synthesis of polysaccharide grains. The embryo suspensor is massive. The endosperm development is of the nuclear type. At the late globular pre-embryo stage, the micropylar 1/3 of the endosperm becomes cellular leaving the rest free-nuclear. The endosperm cytoplasm and nuclei aggregate in the micropylar region and are rich in total proteins and nucleic acids. The concentration of these metabolites, however, declines when the endosperm becomes cellular. The aleurone layer, in mature seed, is rich in proteins and nucleic acid compared to the other persisting endosperm layers.

References

  1. Tanaomi N, Jonoubi P, Chehregani Rad A, Majd A, Ranjbar M. The study of structural and developmental characters of pollen grain, ovule and seed in Ebenus stellata Boiss. Cellular and Molecular Researches (Iranian Journal of Biology). 2018 Sep 23;31(3):278-91.
  2. Maheshwari P. An introduction to the embryology of angiosperms. Surjeet Publications.
  3. Johri BM, Garg S. Development of endosperm haustoria in some Leguminosae; 1959.
  4. Olanj N, Tanaomi N, Koolivand M. The study of structure and developmental events of reproductive organs and seed in Onobrychis viciifolia. Journal of Plant Research (Iranian Journal of Biology). 2021 Dec 22;34(4):843-54.
  5. Rembert Jr DH. Comparative megasporogenesis in Papilionaceae. American Journal of Botany. 1969 Jul;56(6):584-91. https://doi.org/10.1002/j.1537-2197.1969.tb07573.x
  6. Endress PK. Flower structure and trends of evolution in eudicots and their major subclades1. Annals of the Missouri Botanical Garden. 2010 Dec;97(4):541-83. https://doi.org/10.3417/2009139
  7. Haig D. Poles apart: monosporic, bisporic and tetrasporic embryo sacs revisited. Frontiers in Ecology and Evolution. 2020 Sep 15;8:516-640. https://doi.org/10.3389/fevo.2020.516640
  8. Deshpande PK, Untawale AG. Development of Seed and Fruit in Indigofera enneaphylla L. Botanical Gazette. 1971 Jun 1;132(2):96-102. https://doi.org/10.1086/336567
  9. Deshpande PK, Bhasin RK. Embryological Studies in Phaseolus aconitifolius Jacq. Obs. Botanical Gazette. 1974 Jun 1;135(2):104-13. https://doi.org/10.1086/336737
  10. Dnyansagar VR, Deshpande PK, Padhye MD. Recent trends and contacts between cytogenetics, embryology and morphology. In: Seminar on recent trends and contacts between cytogenetics, embryology and morphology (1976: Nagpur University) 1978. Today & Tomorrow's Printers and Publishers.
  11. Suri RK, Deshpande PK. Development of seed in Cassia absus and Cassia auriculata. Phytomorphology; 1983.
  12. Deshpande PK, Thakkar SJ. Contribution to the embryology of Cassia mimosoides L.
  13. Deshpande PK, Gomkale KD. Embryological Studies in Prosopis Juliflora (SW.) DC.
  14. Williams JH, Friedman WE. Identification of diploid endosperm in an early angiosperm lineage. Nature. 2002 Jan;415(6871):522-26. https://doi.org/10.1038/415522a
  15. Doll NM, Ingram GC. Embryo–Endosperm Interactions. Annual Review of Plant Biology. 2022 Feb 7;73. https://doi.org/10.1146/annurev-arplant-102820-091838
  16. Bunma S, Balslev H. A review of the economic botany of Sesbania (Leguminosae). The Botanical Review. 2019 Sep;85(3):185-251. https://doi.org/10.1007/s12229-019-09205-y
  17. Anita DD, Sridhar KR. Nutraceutical potential of ripened beans of mangrove wild legume Sesbania speciosa. In: Biotechnological Utilization of Mangrove Resources 2020 Jan 1 (pp. 243-59). Academic Press. https://doi.org/10.1016/B978-0-12-819532-1.00009-3
  18. Feder NE, O'brien TP. Plant microtechnique: some principles and new methods. American journal of Botany. 1968 Jan;55(1):123-42. https://doi.org/10.1002/j.1537-2197.1968.tb06952.x
  19. Weber KL, Osborn MA. Proteins and sodium dodecyl sulfate: molecular weight determination on polyacrylamide gels and related procedures. The proteins. 1975;1:179-223. https://doi.org/10.1016/B978-0-12-516301-9.50007-3
  20. Gifford Jr EM, Tepper HB. Histochemical and autoradiographic studies of floral induction in Chenopodium album. American Journal of Botany. 1962 Aug;49(7):706-14. https://doi.org/10.1002/j.1537-2197.1962.tb15000.x
  21. Diboll AG, Larson DA. An electron microscopic study of the mature megagametophyte in Zea mays. American Journal of Botany. 1966 Apr;53(4):391-402. https://doi.org/10.1002/j.1537-2197.1966.tb07351.x
  22. Schulz SR, Jensen W. Capsella embryogenesis: the early embryo. Journal of ultrastructure research. 1968 Mar 1;22(5-6):376-92. https://doi.org/10.1016/S0022-5320(68)90028-2
  23. Schulz R, Jensen WA. Capsella embryogenesis: the egg, zygote and young embryo. American Journal of Botany. 1968 Aug;55(7):807-19. https://doi.org/10.1002/j.1537-2197.1968.tb07438.x
  24. Schulz P, Jensen WA. Capsella embryogenesis: the suspensor and the basal cell. Protoplasma. 1969 Jun;67(2):139-63. https://doi.org/10.1007/BF01248736
  25. Marinos NG. Embryogenesis of the pea (Pisum sativum) I. The cytological environment of the developing embryo. Protoplasma. 1970 Sep;70(3):261-79. https://doi.org/10.1007/BF01275757
  26. Newcomb W, Steeves TA. Helianthus annuus embryogenesis: embryo sac wall projections before and after fertilization. Botanical Gazette. 1971 Dec 1;132(4):367-71. https://doi.org/10.1086/336604
  27. Newcomb W, Fowke LC. The fine structure of the change from the free-nuclear to cellular condition in the endosperm of chickweed Stellaria media. Botanical Gazette. 1973 Sep 1;134(3):236-41. https://doi.org/10.1086/336709
  28. Berger C, Erdelská O. Ultrastructural aspects of the embryo sac of Jasione montana L.: cell walls. Caryologia. 1973 Jan 1;25(sup1):109-20. https://doi.org/10.1080/00087114.1973.10797117
  29. Gori P. Wall ingrowths in the embryo sac of Euphorbia helioscopia. Israel journal of botany; 1977.
  30. Prabhakar K, MR V. Histochemistry and ultrastructure of suspensor cells in Alyssum maritimum. Cytologia. 1983 Jun 25;48(2):389-402. https://doi.org/10.1508/cytologia.48.389
  31. Folsom MW, Peterson CM. Ultrastructural aspects of the mature embryo sac of soybean, Glycine max (L.) Merr. Botanical Gazette. 1984 Mar 1;145(1):1-10. https://doi.org/10.1086/337418
  32. Vijayaraghavan MR, Misra G, Sujata V. Wands labyrinth in the embryo sac of Nigella damascena Linn. Proceedings: Plant Sciences. 1988 Aug;98(4):261-68. https://doi.org/10.1007/BF03053797
  33. Newcomb W. The development of the embryo sac of sunflower Helianthus annuus after fertilization. Canadian Journal of Botany. 1973 May 1;51(5):879-90. https://doi.org/10.1139/b73-110
  34. Prasad K. Development and organization of gametophytes in certain species of Cruciferae. Acta Botanica Indica; 1975.
  35. Sehgal CB, Gifford Jr EM. Developmental and Histochemical Studies of the Ovules of Nicotiana rustica L. Botanical Gazette. 1979 Jun 1;140(2):180-88. https://doi.org/10.1086/337074
  36. Jensen WA. The ultrastructure and histochemistry of the synergids of cotton. American Journal of Botany. 1965 Mar;52(3):238-56. https://doi.org/10.1002/j.1537-2197.1965.tb06781.x
  37. Vijayaraghavan MR, Jensen WA, Ashton ME. Synergids of Aquilegia formosa their histochemistry and ultrastructure. Phytomorphology. 1972 Jan 1;22(2):144-59.
  38. Malik CP, Vermani S. Physiology of sexual reproduction. I. A histochemical study of the embryo sac development in Zephyranthes rosea and Lagenaria vulgaris. Acta Histochemica. 1975 Jan 1;53(2):244-80.
  39. Vijayaraghavan MR, Bhat US. Synergids and antipodal cells in Ranunculus scleratus Linn.--a histochemical approach. Proceedings of the Indian National Science Academy. Part B. Biological sciences; 1980.
  40. Kallarackal JO, Bhatnagar SP. Cytochemical studies on the developing female gametophyte of Linaria bipartita. Acta Botanica Indica; 1980.
  41. Soman P, Bhargava M. Histochemical studies on the female gametophyte of Argemone mexicana L. Cytologia. 1980 Jun 25;45(1-2):281-91. https://doi.org/10.1508/cytologia.45.281
  42. Tilton VR. Ovule development in Ornithogalum caudatum (Liliaceae) with a review of selected papers on Angiosperm reproduction : IV. Egg apparatus structure and fucntion. New Phytologist. 1981 Jul;88(3):505-31. https://doi.org/10.1111/j.1469-8137.1981.tb04095.x
  43. Bhandari NN, Sachdeva A. Some aspects of organization and histochemistry of the embryo sac of Scilla sibirica sato. Protoplasma. 1983;116(2):170-78. https://doi.org/10.1007/BF01279835
  44. Diboll AG. Fine structural development of the megagametophyte of Zea mays following fertilization. American Journal of Botany. 1968 Aug;55(7):787-806. https://doi.org/10.1002/j.1537-2197.1968.tb07437.x
  45. Gunning BE, Pate JS. “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure and development. Protoplasma. 1969 Mar;68(1):107-33. https://doi.org/10.1007/BF01247900
  46. Vijayaraghavan MR, Bhat U. Localization of macromolecules during achene development in Rannunculus sceleratus L. Beitrage zur Biologie der Pflanzen; 1982.
  47. Vijayaraghavan MR, Misra G, Saxena P. Nutrient transfer during embryonic development of angiosperm plants. Science Progress (1933- ). 1988 Jan 1:467-80.
  48. Vijayaraghavan MR, Garg ML. Histochemical and ultrastructural aspects of embryo-suspensor in Crotalaria retusa and Crotalaria spectabilis. Phytomorphology; 1988.
  49. Adams CA, Rinne RW, Fjerstad MC. Starch deposition and carbohydrase activities in developing and germinating soya bean seeds. Annals of Botany. 1980 May 1;45(5):577-82. https://doi.org/10.1093/oxfordjournals.aob.a085863
  50. Parker ML. Cell wall storage polysaccharides in cotyledons of Lupinus angustifolius L. I Deposition during seed development. Protoplasma. 1984 Jun;120(3):224-32. https://doi.org/10.1007/BF01282603
  51. Pritchard HN. A cytochemical study of embryo development in Stellaria media. American Journal of Botany. 1964 May;51(5):472-79. https://doi.org/10.1002/j.1537-2197.1964.tb06658.x
  52. Alvarez MR, Sagawa Y. A histochemical study of embryo sac development in Vanda (Orchidaceae). Caryologia. 1965 Jan 1;18(2):241-49. https://doi.org/10.1080/00087114.1965.10796169
  53. Rudramuniyappa CK, Panchaksharappa MG. Histochemical study of seed development in Panicum. Beitrage zur Biologie der Pflanzen; 1979.
  54. Garg ML. Histochemical and Ultrastructural Studies in Crotalaria retusa Linn. and Crotalaria spectabilis Roth.(Leguminosae)--Egg to Seedling (Doctoral dissertation, University of Delhi).
  55. Wheeler CT, Boulter D. Nucleic acids of developing seeds of Vicia faba L. Journal of Experimental Botany. 1967 May 1;18(2):229-40. https://doi.org/10.1093/jxb/18.2.229
  56. Briarty LG, Coult DA, Boulter D. Protein bodies of developing seeds of Vicia faba. Journal of Experimental Botany. 1969 May 1;20(2):358-72. https://doi.org/10.1093/jxb/20.2.358
  57. Millerd A, Whitfeld PR. Deoxyribonucleic acid and ribonucleic acid synthesis during the cell expansion phase of cotyledon development in Vicia faba L. Plant Physiology. 1973 Jun;51(6):1005-10. https://doi.org/10.1104/pp.51.6.1005
  58. Walbot V. RNA metabolism during embryo development and germination of Phaseolus vulgaris. Developmental Biology. 1971 Nov 1;26(3):369-79. https://doi.org/10.1016/0012-1606(71)90069-8
  59. Clutter ME, Sussex IM. Ultrastructural development of bean embryo cells containing polytene chromosomes. In Journal of Cell Biology 1968 Jan 1 (Vol. 39, No. 2 P 2, p. A26). 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021: ROCKEFELLER UNIV PRESS.
  60. Yeung EC, Clutter ME. Embryogeny of Phaseolus coccineus: Growth and microanatomy. Protoplasma. 1978 Mar;94(1):19-40. https://doi.org/10.1007/BF01275532
  61. Yeung EC, Clutter ME. Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Canadian Journal of Botany. 1979 Jan 15;57(2):120-36. https://doi.org/10.1139/b79-021
  62. Schnepf E, Nagl W. Über einige Strukturbes on der heiten der Suspensor zellen von Phaseolus vulgaris. Protoplasma. 1970 Mar;69(1):133-43. https://doi.org/10.1007/BF01276655
  63. Newcomb W, Fowke LC. Stellaria media embryogenesis: the development and ultrastructure of the suspensor. Canadian Journal of Botany. 1974 Mar 1;52(3):607-14. https://doi.org/10.1139/b74-076
  64. Sangduen N, Kreitner GL, Sorensen EL. Light and electron microscopy of embryo development in perennial and annual Medicago species. Canadian Journal of Botany. 1983 Mar 1;61(3):837-49. https://doi.org/10.1139/b83-094
  65. Cooper GO. Cytological investigations of Pisum sativum. Botanical Gazette. 1938 Mar 1;99(3):584-91. https://doi.org/10.1086/334732
  66. Nagl W. Über Endopolyploidie, Restitutionskernbildung und Kernstrukturen im Suspensor von Angiospermen und einer Gymnosperme. Österreichische Botanische Zeitschrift. 1962 Jan 1;109(4/5):431-94. https://doi.org/10.1007/BF01288126
  67. Nagl W. Banded polytene chromosomes in the legume Phaseolus vulgaris. Nature. 1969 Jan;221(5175):70-71. https://doi.org/10.1038/221070b0
  68. Brady T. Cytological studies on the suspensor polytene chromosomes of Phaseolus: DNA content and synthesis and the ribosomal cistrons. Caryologia. 1973 Jan 1;25(sup1):233-59. https://doi.org/10.1080/00087114.1973.10797128
  69. Brady T. Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus. Cell Differentiation. 1973 May 1;2(2):65-75. https://doi.org/10.1016/0045-6039(73)90022-5
  70. Viegi L, Pagni AM, Corsi G, Renzoni GC. Embryo suspensor in Cruciferae I. Morphology and Structure. G Bot ital. 1976;110:347-57. https://doi.org/10.1080/11263507609433029
  71. Nagl W. Early embryogenesis in Tropaeolum majus L.: Evolution of DNA content and polyteny in the suspensor. Plant Science Letters. 1976 Jul 1;7(1):1-6. https://doi.org/10.1016/0304-4211(76)90038-9
  72. Nagl W. The Phaseolus suspensor and its polytene chromosomes. Zeitschrift für Pflanzenphysiologie. 1974 Jun 1;73(1):1-44. https://doi.org/10.1016/S0044-328X(74)80142-X
  73. d’Amato F. Role of polyploidy in reproductive organs and tissues. In Embryology of angiosperms 1984 (pp. 519-66). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69302-1_11
  74. Avanzi SI, Cionini PG, D'Amato F. Cytochemical and Autoradiographic Analyses on the Embryo Suspensor Cells of Phaseolus coccineos. Caryologia. 1970 Jan 1;23(4):605-38. https://doi.org/10.1080/00087114.1970.10796398
  75. Nagl W. Origin and fate of the micronucleoli in the giant cells of the Phaseolus suspensor. Nucleus. 1973;XVI:100-09.
  76. Nagl W. The angiosperm suspensor and the mammalian trophoblast: organs with similar cell structure and function?. Bulletin de la Société Botanique de France. 1973 Jan 1;120(sup1):289-301. https://doi.org/10.1080/00378941.1973.10839212
  77. Vijayaraghavan MR, Prabhakar K, Puri BK. Histochemical, structural and ultrastructural features of endosperm in Alyssum maritimum Lam. Acta Botanica Neerlandica. 1984 Jan 1;33(1):111-22. https://doi.org/10.1111/j.1438-8677.1984.tb01776.x
  78. Friedman WE, Madrid EN, Williams JH. Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. International Journal of Plant Sciences. 2008 Jan;169(1):79-92. https://doi.org/10.1086/523354
  79. Smart MG, O'brien TP. The development of the wheat embryo in relation to the neighbouring tissues. Protoplasma. 1983 Feb;114(1):1-3. https://doi.org/10.1007/BF01279863
  80. Brisson JD, Peterson RL. SEM of fractured plant material embedded in glycol methacrylate. 1975.
  81. Bhatnagar SP, Sawhney V. Endosperm—Its Morphology, infrastructure and Histochemistry. In International Review of Cytology 1981 Jan 1 (Vol. 73, pp. 55-102) Academic Press. https://doi.org/10.1016/S0074-7696(08)61286-3

Downloads

Download data is not yet available.