Radical scavenging activities of Kaempferia larsenii Sirirugsa extract and prominent flavonoids in its rhizomes
DOI:
https://doi.org/10.14719/pst.1964Keywords:
Antioxidant, Flavonoid, Kaempferia larsenii, Kaempferol, Pro rasi, Radical scavenging activityAbstract
Medicinal plants of the genus Kaempferia (Zingiberaceae) have long been valued in Thailand, where their fresh rhizomes, extracts and oils are utilized for traditional medicinal purposes. While the well-known Kaempferia plants, particularly K. galanga and K. parviflora have been scientifically proven to be effective medicinal herbs in antioxidative investigations and in a variety of pharmacological activities, K. larsenii, one of the members of this genus that is found in northeastern Thailand and has long been used by local practitioners for curative purposes, has never had the chemical constituents and antioxidant activity reported before. Thus, the purpose of this study was to determine the antioxidant capacity of the plant and the active chemical components accountable for its action. K. larsenii rhizome extract was subjected to a number of antioxidative tests, including 2,2?-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 2,2-diphenyl-1-picrylhydrazyl, superoxide anion and hydroxyl radical scavenging activities, as well as HPLC analyses. The HPLC method used a ZORBAX Eclipse Plus C18 column, a 1 mL/min flow rate of methanol and 0.1% (v/v) phosphoric acid (55:45) and a diode-array UV absorbance at 265 nm as the stationary phase, mobile phase and detection respectively. In the investigated assays, the plant extract exhibited remarkable antioxidant activity, with EC50 values ranging from 11.60 to 26.31 µg/mL. Its efficacy was significantly higher than that of the positive controls, which had EC50 values ranging from 13.08 to 29.91 µg/mL. According to the HPLC profile of the extract, the medicinal flavonoids kaempferol and quercetin were present in the sample at % of 12.7562 and 0.4976 (w/w) respectively. K. larsenii rhizome extract is a good source of antioxidants and has the potential to be incorporated into herbal medicinal preparations that would be beneficial for health.
Downloads
References
Labrooy CD, Abdullah TL, Stanslas J. Identification of ethnomedicinally important Kaempferia L. (Zingiberaceae) species based on morphological traits and suitable DNA region. Curr Plant Biol. 2018;14:50-55. https://doi.org/10.1016/j.cpb.2018.09.004
Theanphong O, Jenjittikul T, Mingvanish W, Rungsihirunrat K. Phylogenetic relationships of Kaempferia plants based on inter-simple sequence repeat fingerprints. Songklanakarin J Sci Technol. 2018;40(3):617-22. https://doi.org/10.14456/sjst-psu.2018.81
Mahanta BP, Sarma N, Kemprai P, Begum T, Saikia L, Lal M et al. Hydrodistillation based multifaceted value addition to Kaempferia galanga L. leaves, an agricultural residue. Ind Crops Prod. 2020;154:112642. https://doi.org/10.1016/j.indcrop.2020.112642
Begum T, Gogoi R, Sarma N, Pandey SK, Lal M. Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: a high industrially important species. Ind Crops Prod. 2022;180:114765. https://doi.org/10.1016/j.indcrop.2022.114765
Chuakul W, Boonpleng A. Ethnomedical uses of Thai Zingiberaceous plant (1). Thai J Phytopharm. 2003;10:33-39.
Chuakul W, Boonpleng A. Survey on medicinal plants in Ubon Ratchathani province (Thailand). Thai J Phytopharm. 2004;11:33-54.
Lal M, Munda S, Dutta S, Baruah J, Pandey SK. Identification of the new high oil and rhizome yielding variety of Kaempferia galanga (Jor Lab K-1): a highly important indigenous medicinal plants of North East India. J Essent Oil Bear Plants. 2017;20(5):1275-82. https://doi.org/10.1080/0972060X.2017.1400405
Vichitphan S, Vichitphan K, Sirikhansaeng P. Flavonoid content and antioxidant activity of Krachai-Dum (Kaempferia parviflora) wine. KMITL Sci Tech J. 2007;7(2-1):97-05.
Sirirugsa P. Taxonomy of the genus Kaempferia (Zingiberaceae) in Thailand. Thai For Bull. 1992;19:1-15.
Picheansoonthon C, Koonterm S. Notes on the genus Kaempferia L. (Zingiberaceae) in Thailand. J Thai Trad Alt Med. 2008;6(1):73-93.
Biskup I, Golonka I, Gamian A, Sroka Z. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postepy Hig Med Dosw. 2013;67:958-63. https://doi.org/10.5604/17322693.1066062
Sudha G, Priya MS, Shree RI, Vadivukkarasi S. In vitro free radical scavenging activity of raw Pepino fruit (Solanum muricatum Aiton). Int J Curr Pharm Res. 2011;3(2):137-40.
Hussein MA. A convenient mechanism for the free radical scavenging activity of resveratrol. Int J Phytomed. 2011;3:459-69.
Elshamy AI, Mohamed TA, Essa AF, Abd-El Gawad AM, Alqahtani AS, Shahat AA et al. Recent advances in Kaempferia phytochemistry and biological activity: a comprehensive review. Nutrients. 2019;11(10):2396. https://doi.org/10.3390/nu11102396
Kumar A. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L.–an overview. J Ethnopharmacol. 2020;253:112667. https://doi.org/10.1016/j.jep.2020.112667
Nonglang FP, Khale A, Bhan S. Phytochemical characterization of the ethanolic extract of Kaempferia galanga rhizome for anti-oxidant activities by HPTLC and GCMS. Futur J Pharm Sci. 2022;8:9. https://doi.org/10.1186/s43094-021-00394-1
Zu Y, Li C, Fu Y, Zhao C. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed Anal. 2006;41(3):714-19. https://doi.org/10.1016/j.jpba.2005.04.052
Yeap YSY, Kassim NK, Ng RC, Ee GCL, Yazan LS, Musa KH. Antioxidant properties of ginger (Kaempferia angustifolia Rosc.) and its chemical markers. Int J Food Prop. 2017;20(S1):1158-72. https://doi.org/10.1080/10942912.2017.1286508
Xiang Z, Wu X, Zhong X. Ultrasonication assisted extraction of total flavonoids from Kaempferia galanga L. and its antioxidant activity. Bangladesh J Bot. 2020;49(3):601-09. https://doi.org/10.3329/bjb.v49i3.49990
Rahman I, Kabir T, Islam N, Muqaddim M, Sharmin S, Ullah MS et al. Investigation of antioxidant and cytotoxic activities of Kaempferia galanga L. Research J Pharm and Tech. 2019;12(5):2189-94. https://doi.org/10.5958/0974-360X.2019.00365.2
Panyakaew J, Chalom S, Sookkhee S, Saiai A, Chandet N, Meepowpan P et al. Kaempferia sp. extracts as UV protecting and antioxidant agents in sunscreen. J Herbs Spices Med Plants. 2021;27(1):37-56. https://doi.org/10.1080/10496475.2020.1777614
Khairullah AR, Solikhah TI, Ansori ANM, Hanisia RH, Puspitarini GA, Fadholly A et al. Medicinal importance of Kaempferia galanga L. (Zingiberaceae): a comprehensive review. J Herbmed Pharmacol. 2021;10(3):281-88. https://doi.org/10.34172/jhp.2021.32
Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y et al. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: the role of TRAF6 in diabetic nephropathy. J Ethnopharmacol. 2021;268:113553. https://doi.org/10.1016/j.jep.2020.113553
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H et al. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr. 2021. https://doi.org/10.1080/10408398.2021.1980762
Hofer S, Geisler S, Lisandrelli R, Ngoc HN, Ganzera M, Schennach H et al. Pharmacological targets of kaempferol within inflammatory pathways—a hint towards the central role of tryptophan metabolism. Antioxidants. 2020;9(2):180. https://doi.org/10.3390/antiox9020180
Pham HNT, Sakoff JA, Vuong QV, Bowyer MC, Scarlett CJ. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data Br. 2018;21:1033-36. https://doi.org/10.1016/j.dib.2018.10.121
Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021;137:257-64. https://doi.org/10.1016/j.sajb.2020.10.022
Singh CK, Siddiqui IA, El?Abd S, Mukhtar H, Ahmad N. Combination chemoprevention with grape antioxidants. Mol Nutr Food Res. 2016;60:1406-15. https://doi.org/10.1002/mnfr.201500945
Couto J, Figueirinha A, Batista MT, Paranhos A, Nunes C, Gonçalves LM et al. Fragaria vesca L. extract: a promising cosmetic ingredient with antioxidant properties. Antioxidants. 2020;9(2):154. https://doi.org/10.3390/antiox9020154
Downloads
Published
Versions
- 12-01-2023 (3)
- 01-01-2023 (2)
- 28-12-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Orawan Theanphong, Pathom Somwong
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).