Characterization of phytochemicals by GC-MS, in-vitro biological assays and micronutrient analysis by ICP-MS of Prunus domestica L. seeds
DOI:
https://doi.org/10.14719/pst.1969Keywords:
GC-MS, ICP-MS, DPPH, α-amylase, antibacterial activityAbstract
In the present study, Prunus domestica L. (plum) seeds were used as the source of the oil component. To extract the oil, Soxhlet extraction using two different solvents petroleum ether and diethyl ether were used in increasing the order of polarity. GC-MS analysis of the obtained oil component was carried out and revealed the identification of 33 and 34 compounds in PE and DEE fractions respectively. 13-Docosenamide, (Z)- was the most abundant compound in PE fraction while the 2nd most abundant compound in DEE fraction. Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester was the most abundant compound in DEE fraction. The oil components were further assessed for in-vitro biological assays namely antidiabetic assay, antioxidant assay and antibacterial assay. ICP-MS analysis for the quantification of 12 different metals (K, Mg, Ca, Fe, Mn, Cr, Zn, Ni, Cu, As, Pb, Se) was also carried out. K was the major element in all the tested elements. Lead, arsenic and selenium were present below the limit of quantification (BLQ). Therefore, the current study through the light on therapeutic aspects of the oil components of P. domestica seeds.
Downloads
References
El-Beltagi HS, El-Ansary AE, Mostafa MA, Kamel TA, Safwat G. Evaluation of the phytochemical, antioxidant, antibacterial and anticancer activity of Prunus domestica fruit. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2019;47(2):395-404. https://doi.org/10.15835/nbha47111402
Batiha GES, Beshbishy AM, El-Mleeh A, Abdel-Daim MM, Devkota HP. Traditional uses, bioactive chemical constituents and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules. 2020;10(3):352. https://doi.org/10.3390/biom10030352
Jamshidi KF, Lorigooini Z, Amini KH. Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology. 2018;7(1):1-7. https://doi.org/10.15171/jhp.2018.01
Mukherjee PK, Wahile A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. Journal of Ethnopharmacology. 2006;103(1):25-35. https://doi.org/10.1016/j.jep.2005.09.024
Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants. Publication and Information Directorate. CSIR: New Delhi; 2009. p. 205.
Mehta S, Soni N, Satpathy G, Gupta RK. Evaluation of nutritional phytochemical, antioxidant and antibacterial activity of dried plum (Prunus domestica). Journal of Pharmacognosy and Phytochemistry. 2014;3(2):166-71.
Mahmood A, Ahmed R, Kosar S. Phytochemical screening and biological activities of the oil components of Prunus domestica Linn. Journal of Saudi Chemical Society. 2009;13(3):273-77. https://doi.org/10.1016/j.jscs.2009.10.008
Hummer KE, Janick J. Rosaceae: Taxonomy economic importance, genomics. In: Genetics and genomics of Rosaceae. New York: Springer; 2009. p.1-17. https://doi.org/10.1007/978-0-387-77491-6_1
Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist. 2017;214(3):1355-67. https://doi.org/10.1111/nph.14461
Xiang Y, Huang CH, Hu Y, Wen J, Li S, Yi T et al. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution. 2016;34(2):262-81. https://doi.org/10.1093/molbev/msw242
Gilani, SA, Qureshi RA, Khan AM, Potter D. Morphological characterization of the pollens of the selected species of genus Prunus Linn. from northern Pakistan. African Journal of Biotechnology. (2010);9(20):2872-79.
Vicente AR, Manganaris GA, Zevallos LC, Crisosto CH. 13 Prunus. Health-promoting properties of fruits and vegetables ed Terry LA. CAB International; 2011. p.238-59. https://doi.org/10.1079/9781845935283.0238
Das B, Ahmed N, Singh P. Prunus diversity- early and present development: A review. International Journal of Biodiversity and Conservation. 2011;3(14):721-34. https://doi.org/10.5897/IJBCX11.003
Vi?anu F, Botu I, Baciu A. Assessment of production capacity for some plum, myrobalan and sloe cultivars and selections grown in Northern Oltenia. Acta Horticulturae. 2012;(968):75. https://doi.org/10.17660/ActaHortic.2012.968.9
Kamat V, Sisodiya JH, Mahawar MK, Jalgaonkar K. Determination of some physical properties of Plum (cv. Kala Amritsari) fruits. International Journal of Chemical Studies. 2020;8(3):225-28. https://doi.org/10.22271/chemi.2020.v8.i3c.9230
Nayudu, TS, Sowjanya K. Anti-Diabetic activity of methanolic extract of Prunus domestica. International Journal on Recent and Innovation Trends in Computing and Communication. 2017;5(4):213-20.
Decroocq V, Hagen LS, Fave MG, Eyquard JP, Pierronnet A.). Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Molecular Breeding. 2004;13(2):135-42. https://doi.org/10.1023/B:MOLB.0000018761.04559.b3
Horvath A, Balsemin E, Barbot JC, Christmann H, Manzano G, Reynet P, et al. Phenotypic variability and genetic structure in plum (Prunus domestica L.), cherry plum (P. cerasifera Ehrh.) and sloe (P. spinosa L.). Scientia Horticulturae. 2011;129(2):283. https://doi.org/10.1016/j.scienta.2011.03.049
Narimanovna AN, Makhmadalievich TS, Djalilovich MS, Erkinovna MN, Takhirovich SB. The study of laxative activity of polysaccharides from the fruit of Prunus domestica L. European Science Review. 2016;(9-10):52-54.
Qaiser J, Naveed A. The pharmacological activities of prunes: The dried Plums. Journal of Medicinal Plants Research. 2011;5(9):1508-11.
Lenchyk L. Determination of phenolic compounds in Prunus domestica leaves extract. Scripta Scientifica Pharmaceutica. 2016;2(2):31-35. https://doi.org/10.14748/ssp.v2i2.1302
Jaiswal R, Karako?se H, Ru?hmann S, Goldner K, Neumu?ller M, Treutter D, Kuhnert N. Identification of phenolic compounds in plum fruits (Prunus salicina L. and Prunus domestica L.) by high-performance liquid chromatography/tandem mass spectrometry and characterization of varieties by quantitative phenolic fingerprints. Journal of Agricultural and Food Chemistry. 2013;61(49):12020-31. https://doi.org/10.1021/jf02288j
Usenik V, Stampar F, Kastelec D. Phytochemicals in fruits of two Prunus domestica L. plum cultivars during ripening. Journal of the Science of Food and Agriculture. 2013;93(3):681-92. https://doi.org/10.1002/jsfa.5783
Milosevic T, Milosevic N. Factors influencing mineral composition of plum fruits. Journal of Elementology. 2012;17(3):453-64. https://doi:10.5601/jelem.2012.17.3.08
Savic I, Savic GI, Gajic D. Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica Linn.). Biomolecules. 2020;10(2):294. https://doi.org/10.3390/biom10020294
Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochimica Polonica. 2008;55(2):391-98. https://doi.org/10.18388/abp.2008_3087
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995:28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Shukla RK, Painuly D, Shukla A, Singh J, Porval A, Vats, S. In vitro biological activity and total phenolic content of Morus nigra seeds. Journal of Chemical and Pharmaceutical Research. 2014;6:200-10.
Shukla RK, Kishan, Shukla A, Singh R. Evaluation of nutritive value, phytochemical screening, total phenolic content and in-vitro antioxidant activity of the seed of Prunus domestica L. Plant Science Today. 2021;8(4):830-35. https://doi.org/10.14719/pst.2021.8.4.1231
Asiedu-Gyekye IJ, Antwi DA, Bugyei KA, Awortwe C. Comparative study of two Kalanchoe species: Total flavonoid and phenolic contents and antioxidant properties. African Journal of Pure and Applied Chemistry. 2012;6(5):65-73. https://doi.org/10.5897/AJPAC11.088
Pohl HR, Wheeler JS, Murray HE. Sodium and potassium in health and disease: Interrelations between essential metal ions and human diseases. 2013;29-47. https://doi.org/10.1007/978-94-007-7500-8_2
Erikson KM, Aschner M. Manganese: its role in disease and health. Metal ions in life sciences. 2019;19:253-66. https://doi.org/10.1515/9783110527872-016
Anderson RA. Chromium as an essential nutrient for humans. Regulatory toxicology and pharmacology. 1997;26(1):35-41. https://doi.org/10.1006/rtph.1997.1136
Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda dam kohat. Journal of Pharmaceutical Sciences and Research. 2015;7(3):89-97.
Pironi L, Miglioli M, Cornia GL, Alessandra MU, Tolomelli M, Piazzi S, Barbara L. Urinary zinc excretion in crohn's disease. Digestive Diseases and Sciences. 1987;32(4):358-62. https://doi.org/10.1007/BF01296288
Zdrojewicz Z, Popowicz E and Winiarski J. Nickel - role in human organism and toxic effects. Organ polskiego towarzystwa lekarskiego. 2016;41(242):115-18.
Sabry MIE, Stino FK, El-Ghany WAA. Copper: benefits and risks for poultry, livestock and fish production. Tropical Animal Health and Production. 2021;53(5):1-14. https://doi.org/10.1007/s11250-021-02915-9
The Ayurvedic Pharmacopeia of India. Department of ayurveda, yoga and naturopathy, unani, siddha and homeopathy, New Delhi (GOI): Ministry of health and family welfare; 2007.
Rocourt CRB, Cheng WH. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients. 2013;5(4):1349-65. https://doi.org/10.3390/nu5041349
Devillers J, Steiman R, Seigle-Murandi F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere. 1989;19(10-11):1693-700. https://doi.org/10.1016/0045-6535(89)90512-2
Sun J, He Y, Yu C, Wang N, Tian L. Elemental Analysis of Xinjiang Rose Hips by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Chemometric Analysis. Analytical Letters. (2022);55(2):292-304. https://doi.org/10.1080/00032719.2021.1925904
Downloads
Published
Versions
- 22-10-2022 (2)
- 09-10-2022 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Kishan Kishan, Shukla Rishi Kumar, Shukla Abha , Kumar Sahil
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).