Impact of Elevated Temperature and Carbon dioxide on Seed Physiology and Yield
DOI:
https://doi.org/10.14719/pst.2059Keywords:
Climate Change, Elevated CO2, Heat stress, Seed germination, YieldAbstract
Food security is of utmost priority to humankind. This is the implication of various interconnected factors that lead to climate change. Elevated temperature and carbon dioxide levels are just 2 of these. The nutrient is an inseparable aspect of food. The change in climate is posing threat not only to the amount of available food but also to the nutrients laden in the food items. Seeds are the miniature form of plants and are a reflection of their future health and nutritional status. The changes in environmental factors predominantly challenge the growth and development of a seed. This review is an attempt to understand the impact of elevated CO2 and temperature on seed germination, the nutritional status of the seed and the yield in form of total seed production. It gives a direction for analysis and future studies that may use the latest available tools like gene editing to tackle and counteract the retarding effect of climate change on these parameters of seed, thereby offering a climate resilient agriculture.
Downloads
References
Koubour?s CG, Metz?dak?s TI, Vas?lakak?s DM. Impact of temperature on olive (Olea europaea L.) pollen performance in relation to relative humidity and genotype. Env?ron Exp Bot. 2009; 67: 209-14. https://doi.org/10.1016/j.envexpbot.2009.06.002
IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, SD Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Heidari Z, Kamkar B, Sinaki JM. Influence of temperature on seed germination response of fennel. Adv Plants Agric Res. 2014;1(5):207-13. doi: 10.15406/apar.2014.01.00032
Huang Z, Zhang XS, Zheng GH, Gutterman Y. Influence of light, temperature, salinity and storage on seed germination of Haloxylonammodendron. J Arid Environ. 2003; 55:453-64. https://doi.org/10.1016/S0140-1963(02)00294-X
Tlig T, Gorai M, Neffati M. Germination responses of Diplotaxisharrato temperature and salinity. Flora. 2008; 203:421-28. https://doi.org/10.1016/j.flora.2007.07.002
Wahid A, Gelani S, Ashraf M, Foolad MR 2007. Heat tolerance in plants: An overview. Environ Exp Bot. 2007;61:199-223. http://dx.doi.org/10.1016/j.envexpbot.2007.05.011
Machado EC, Medina CL, Gomes MMA, Habermann G. Variaçãosazonal da fotossíntese, condutânciaestomática e potencial da águanafolha de laranjeira ‘valência’. Scientia Agricola. 2002;59(1):53-58. https://doi.org/10.1590/S0103-90162002000100007
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501-23.doi: 10.1111/j.1469-8137.2006.01787.x
Begcy K, Sandhu J, Walia H. Transient heat stress during early seed development primes germination and seedling establishment in rice. Front Pl Sci. 2018; 9: 1768. doi: 10.3389/fpls.2018.01768
Iloh AC, Omatta G, Ogbadu GH, Onyenekwe PC. Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria Sci Res Essays. 2014; 9(18):806-13. DOI: 10.5897/SRE2014.5968
Opio P, Photchanachai S. Heat stress influences dormancy in peanut seeds (Arachis hypogea L.) cv. KhonKaen 84-88.
South-WestJ Hort Biol Environ. 2016;7(2): 127-37.
Guo C, Shen Y, Fenghou SF. Effect of temperature, light and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests. 2020;11:300-16. https://doi.org/10.3390/f11030300
Kim DH, Han SH. Direct effects on seed germination of 17 tree species under elevated temperature and CO2 conditions. Open Life Sci. 2018;13:137-48. https://doi.org/10.1515/biol-2018-0019
Han SH, Koo YB, Kim CS, Oh CY, Song JH. Viability determination of Pinus rigida seeds using artificially accelerated aging. Kor J Agri For Meteorol. 2006; 8: 10-14.
Corbineau F, Picard MA, Côme D. Effects of temperature, oxygen and osmotic pressure on germination of carrot seeds: evaluation of seed quality. Acta Hortic. 1994;354: 9-16. https://doi.org/10.17660/ActaHortic.1994.354.1
Bano S, Ashraf M, Akram NA. Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot [Daucus carota (L.)]. J Plant Interact. 2014;9(1):324-29. https://doi.org/10.1080/17429145.2013.832426
Kahouli B, Borgi Z,Hannachi C. Effect of sodium chloride on the germination of the seeds of a collection of carrot accessions (Daucus carota L.) cultivated in the region of Sidi Bouzid. J Stress Physiol Biochem. 2014;10(3):28-36.
Vieira JV, Cruz CD, Nascimento WM, Miranda JEC. Selection of carrot progenies based on seed characteristics. Hort Bras. 2005;23(1):44-47. https://doi.org/10.1590/S0102-05362005000100009
Silva-Correia J, Freitas S, Tavares RM, Lino-Neto T, Azevedo H. Phenotypic analysis of the Arabidopsis heat stress response during germination and early seedling development. Plant Methods. 2014; 10(7):1-11. https://doi.org/10.1186/1746-4811-10-7
Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N. Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol. 2006;47:1081-94. https://doi.org/10.1093/pcp/pcj078
Yuan X, Wen B. Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. Plos One. 2018;13(1): e0191710. doi: 10.1371/journal.pone.0191710
Balkaya A. Modelling the effect of temperature on the germination speed in some legume crops. J Agron. 2004;3:179-83. https://doi.org/10.3923/ja.2004.179.183
Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res. 2012;1(4):194-202.
Corbineau F, Bagniol S, Come D. Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J Bot. 1990;39:313-25.
Ziska LH, Bunce JA. The influence of elevated CO2 and temperature on seed germination and emergence from soil. Filed Crops Res. 1993;34:147-57. https://doi.org/10.1016/0378-4290(93)90003-6
Corbineau F, Come D. Control of seed germination and dormancy by the gaseous environment. In: Kigel J, Galili G (Editors). Seed Development and Germination, New York, Basel, Hong Kong, Marcel Dekker, Inc., 1995.
Gan Y, Angadi SV, Cutforth HW, Potts D, Angadi VV, Mc-Donald CL. Canola and mustard response to short period of high temperature and water stress at different developmental stages. Can J Plant Sci. 2004;84:697-704. https://doi.org/10.4141/P03-109
Jalota SK, Ray SS, Panigrahy S. Effects of elevated CO2 and temperature on productivity of three main cropping systems in punjab state of India—a simulation analysis. In: ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture 2009: 138-42.
Butterly C, Armstrong R, Chen D, Tang C. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil. 2015; 391: 367-82. DOI 10.1007/s11104-015-2441-5
Saha S, Sehgal VK, Chakraborty D, Singh MP. Growth Behavior of kabuli Chickpea under Elevated Atmospheric CO2. J Agri Phy. 2013; 13:55-61.
Li Y, Yu Z, Liu X, Mathesius U, Wang G, Tang C, Wu J, Liu J, Zhang S, Jin J. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci. 2017; 14(8):1546. doi: 10.3389/fpls.2017.01546. https://doi.org/10.3389/fpls.2017.01546
Rogers A, Ainsworth EA. Leakey ADB. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Pl Physiol. 2009; 151(3): 1009-16. https://doi.org/10.1104/pp.109.144113
Parvin S, Uddin S, Bourgault M, Roessner U, Tausz Posch S, Armstrong R, O'Leary G, Fitzgerald G, Tausz M. Water availability moderates N2 fixation benefit from elevated [CO2]: A 2 year free air CO2 enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem. Plant Cell Environ. 2018;41(10):2418-34. https://doi.org/10.1111/pce.13360
Liu X, Jian J, Guanghu W,Herbert SJ. Soybean yield physiology and development of high- yielding practices in Northeast China. Field Crops Res. 2008;105:157-71. https://doi.org/10.1016/j.fcr.2007.09.003
Huxley PA, Summerfied RJ, Hughes P. Growth and development of soybean CV-TK5 as affected by tropical day lengths, day/night temperatures and nitrogen nutrition. Ann Apply Biol. 1976; 82:117-33. https://doi.org/10.1111/j.1744-7348.1976.tb01679.x
Sionit N, Strain BR, Flint EP. Interaction of temperature and CO2 enrichment on soybean: Growth and dry matter partitioning. CanJ Plant Sci.1987;67:59-67. https://doi.org/10.4141/cjps87-007
Dornbos DL, Mullen REJr. Influence of stress during soybean seed fill on seed weight, germination and seedling growth rate. J Pl Sc. 1991;71:373-83. https://doi.org/10.4141/cjps91-052
Mann JD, Jaworski EG. Comparison of stresses which may limit soybean yields. Crop Sci.1970;10:620-24. https://doi.org/10.2135/cropsci1970.0011183X001000060003x
Nemeskéri E. Study of heat tolerance during germination in grain legumes. ISTA Seed Symp. Abstracts. Budapest, Hungary, May 17th –19. 2004; 85-86.
Prasad PVV, Boote KJ, Allen LHJr, Thomas JMG. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol. 2002;8:710-21. https://doi.org/10.1046/j.1365-2486.2002.00508.x
Saeidi M, Abdoli M. Effect of drought stress during grain filling on yield and its components, gas exchange variables and some physiological traits of wheat cultivars. J Agric Sci Technol. 2015;17(4):885-98.
Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, Hanumantha Rao B, Nair RM, Prasad PV, Nayyar H. Drought or/and heat-stress efects on seed flling in food crops: impacts on functional biochemistry, seed yields and nutritional quality. Front Plant Sci. 2018;9:1705. https://doi.org/10.3389/fpls.2018.01705
Belmehdi O, El Harsal A, Benmoussi M, Laghmouchi Y, Senhaji NS, Abrini J. Effect of light, temperature, salt stress and pH on seed germination of medicinal plant Origanum elongatum (Bonnet) Emb. & Maire. Biocatal Agric Biotech. 2018;16:126-31. https://doi.org/10.1016/j.bcab.2018.07.032
Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H. Identifcation of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci. 2017; 8:744. https://doi.org/10.3389/fpls.2017.00744
Kaushal N, Bhandari K, Siddique KH, Nayyar H. Food crops face rising temperatures: an overview of responses, adaptive mechanisms and approaches to improve heat tolerance. Cogent Food Agric. 2016; 2(1):1134380 https://doi.org/10.1080/23311932.2015.1134380
Carter DR, Peterson KM. Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia. 1983;58(2):188-93. https://doi.org/10.1007/BF00399215
St. Omer L, Hovath SM. Elevated carbon dioxide concentrations and whole plant senescence. Ecol. 1983; 64(5):1311-14. https://doi.org/10.2307/1937842
Garbutt K, Bazzaz FA. The effects of elevated CO2 on plants: III. Flower, fruit and seed production and abortion. New Phytol. 1984;98(3):433-46. https://doi.org/10.1111/j.1469-8137.1984.tb04136.x
Reekie EG, Bazzaz FA. Phenology and growth in four annual species grown in ambient and elevated CO2. Canad J Bot. 1991; 69(11):2475-81. https://doi.org/10.1139/b91-307
Nascimento WM, Vieira JV, Silva GO, Reitsma KR, Cantliffe DJ. Carrot seed germination at high temperature: Effect of genotype and association with ethylene production. Hort Sc. 2008; 43 (5): 1538-43. https://doi.org/10.21273/HORTSCI.43.5.1538
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Iuchi S. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146(3):1368-85. https://doi.org/10.1104/pp.107.113738
Piskurewicz U, Ture?ková V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. The EMBO Journal. 2009;28(15):2259-71. https://doi.org/10.1038/emboj.2009.170
Smykal P, Mas?n J, Hrdy I, Konopasek I, Zarsky V. Chaperone activity of tobacco HSP18, a small heat-shock protein is inhibited by ATP. The Plant J. 2000;23:703-13. https://doi.org/10.1046/j.1365-313x.2000.00837.x
Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, Frances M. DuPont. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Pl. Sc. 2003;164:873-81. doi:10.1016/S0168-9452(03)00076-1
Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol. 2010;51(5):795-809. https://doi.org/10.1093/pcp/pcq034
Yang H, Gu X, Ding M, Lu W, Lu D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep. 2018;8: 15665. https://doi.org/10.1038/s41598-018-33644-z
Asthir B, Bala S, Bains NS. Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Ind J Exp Biol. 2012;50:372-78.
Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Pl Path. 2011;60(1):2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
Li Y, Yu Z, Jin J, Zhang Q, Wang G, Liu C, Wu J, Wang C, Liu X. Impact of Elevated CO2 on Seed Quality of Soybean at the Fresh Edible and Mature Stages. Front Plant Sci. 2018;9: 1413. 10.3389/fpls.2018.01413. https://doi.org/10.3389/fpls.2018.01413
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Expt Bot. 2020;71(13):3780-3802.https://doi.org/10.1093/jxb/eraa034
Uddling J, Broberg MC, Feng Z, Pleijel H. Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology. 2018;45:262-67. https://doi.org/10.1016/j.pbi.2018.06.001
Giri A, Armstrong B, Rajashekar CB. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Amer J Plant Sci. 2016;7(1):246. https://doi.org/10.4236/ajps.2016.71024
Parvin S, Uddin S, Tausz-Posch S, Armstrong R, Fitzgerald G, Tausz M. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Vicia faba). Crop and Pasture Science. 2019;70(3):244-53. https://doi.org/10.1071/CP18421
Broberg MC, Högy P, Pleijel H. CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy. 2017;7(2):32. https://doi.org/10.3390/agronomy7020032
Prasad PVV, Pisipati SR, Mutava RN, Tunistra MR. Sensitivity of grain sorghum to high temperatures stress during reproductive development. Crop Sci. 2008;48:1911-17. https://doi.org/10.2135/cropsci2008.01.0036
Valdés-López O, Batek J, Gomez-Hernandez N. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Pl Sci 2016;7: 517. https://doi.org/10.3389/fpls.2016.00517
Sehgal A, Kumari S, Jitendra K, Kumar S, Singh S, Siddique KHM, Nayyar H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of Lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci. 2017;8: https://doi.org/10.3389/fpls.2017.01776.
Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM. Heat stress?induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant. 2009;137(2):125-38. https://doi.org/10.1111/j.1399-3054.2009.01266.x
Saini HS. Effects of water stress on male gametophyte development in plants. Sex Plant Repro.1997;10:67-73. https://doi.org/10.1007/s004970050069
Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ. 2015;38(10):2171-92. https://doi.org/10.1111/pce.12545
Goetz M, Guivar?h A, Hirsche J, Bauerfeind MA, González MC, Hyun TK et al. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiol.2017;173(2):984-97. https://doi.org/10.1104/pp.16.01601
Ruan YL. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Ann Rev Plant Biol. 2014;65:33-67. https://doi.org/10.1146/annurev-arplant-050213-040251
Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre-and post-fertilization events in plants under high temperature stress. Plant Cell Rep. 2021;1-19. https://doi.org/10.1007/s00299-021-02795-1
Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front in Physiology. 2017;578. https://doi.org/10.3389/fphys.2017.00578
Jagadish SV, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. Plant Cell Environ. 2021;44 (7):1987-91. 10.1111/pce.14082, 44, 7. doi.org/10.1111/pce.14082
Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ. 2020;43(5):1273-87. https://doi.org/10.1111/pce.13733
Commuri PD, Jones RJ. High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci. 2001;41(4): 1122-30. https://doi.org/10.2135/cropsci2001.4141122x
Talwar S, Bamel K, Prabhavathi, Mal A. Effect of High Temperature on Reproductive Phases of Plants- A Review’. Nature Environ Pol Techn. 2022 (In press). https://doi.org/10.46488/NEPT.2022.v21i04.043
Talwar S, Tayal P, Kumar S, Bamel K, Prabhavathi V. Climate Change: A Threat to Biodiversity. In: Proceedings of National Conference on “Climate Change: Impacts, Adaptation, Mitigation Scenario and Future challenges in Indian Perspective”. 2015;84-93.
Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. Climate change and plant regeneration from seed. Glob Change Biol. 2011;17:2145-61. https://doi.org/10.1111/j.1365-2486.2010.02368.x
Bamel K, Rani N, Bamel JS, Gahlot S, Singh RN, Pathak SK. Current approaches and future perspectives in methods for crop yield estimation, Bull Environ Pharmacol Life Sci. 2022;1:243-47.
Rani N, Bamel K, Shukla A, Singh N. Analysis of Five Mathematical Models for Crop Yield Prediction. South Asian J Experimental Biol. 2022;12(1):46-54. https://doi.org/10.38150/sajeb.12(1).p46-54
Downloads
Published
Versions
- 09-04-2023 (2)
- 12-01-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Seema Talwar, Kiran Bamel, Prabhavathi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).