In-vitro Bioevaluation, Pharmacokinetics and Molecular Docking Study of unexplored Bisabolol-rich Curcuma inodora Blatt. essential oil from Konkan region: A biodiversity hotspot
DOI:
https://doi.org/10.14719/pst.2103Keywords:
α-Bisabolol(α-Bis), Curcuma inodora, Hydro-distilled Rhizome Essential Oil (HDREO), Molecular docking, PharmacokineticsAbstract
Curcuma inodora Blatt., belonging to the Zingiberaceae family is an endemic species from peninsular India. The extraction and some of the biological applications of leaves essential oil of this species had been reported from South India. Although the Konkan region is a biodiversity hotspot, no report on the medicinal applications of essential oils in this species is available to date. Herein, the ?–Bisabolol-rich rhizome essential oil from wild C. inodora was isolated by the hydrodistillation method and characterized by Gas Chromatography-Flame ionization detector (GC/ GC-FID) and Gas Chromatography High-resolution mass spectrometry (GC/HRMS) techniques for pharmacokinetics and molecular docking applications. The Hydrodistillation extract (HDREO) constituted 11 components with a major constituent, ?- Bisabolol (62.13%). In-vitro anti-bacterial, anti-fungal, anti-oxidant, and anti-inflammatory potential of rhizome oils were carried out. The pharmacokinetics of the major component, ?-Bisabolol, like high GI absorption, zero Lipinski violation with good bioavailability score, etc. support its candidacy as a drug. Further, docking was performed with the principal component ?- Bisabolol. The least binding energy conformation of ?–Bisabolol with anti-bacterial (3WGN.pdb), anti-fungal (1IYL.pdb), anti-oxidant (3MNG.pdb) and anti-inflammatory (1CX2.pdb) proteins were reported to be -7.01 kcal/mol, -8.15 kcal/mol, -7.82 kcal/mol, and –7.71 kcal/mol respectively. This shows, the significant binding affinity of ?–Bisabolol with proteins. So, the rhizome oil of this unexplored species can be utilized in developing novel phytopharmaceuticals and medicines after further study. To the best, this is a foremost report on the rhizome essential oil isolation by hydrodistillation method, its characterization, and its bio-evaluation with pharmacokinetics and docking applications of this species.
Downloads
References
Anand U, Herrera N, Altemimi A, Lakhassasi N.A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites.2019, 9,258,1-13. DOI: 10.3390/metabo9110258.
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules.2016, 21,5,1-18. DOI: 10.3390/molecules21050559.
Sharifi –Rad M, Varoni EM, Saloh B, Sharifi-Rad J, Matthews KR, Ayotallahi SA, Kobarfard F, Ibrahim SA, Mnyayer D, Zakaria ZA, Sharifi-Rad, M, Yousaf Z, Ireti M, Basile A, Rigano D. Plants of the Genus Zingiber as a source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules. 2017, 22, 2145. DOI:10.3390/molecules22122145.
Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology.2004,94:223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
Jadhao A S, Bhutkar A S. Genus Curcuma L. (Zingiberaceae) from Maharashtra state India. International Journal of Current Research in Biosciences and Plant Biology.2018,5, 10. DOI:10.20546/ijcrbp.2018.510.006.
Prabhukumar KM, Thomas V, Sabu M, Prasanth AV, Mohanan KV. Systematic and variability studies on ‘hidden purple ginger’, Curcuma inodora Blatter J. (Zingiberaceae)- an endemic promising ginger from Peninsular India. Webbia: Journal of Plant Taxonomy and Geography.2014,69(1),123-130. https://doi.org/10.1080/00837792.2014.913353.
Santoshkumar R, Yusuf A. Chemotaxonomic studies on rhizome extract compositions of twenty Curcuma species from South India. Biochemical Systematics and Ecology.2019,84, 21-25. https://doi.org/10.1016/j.bse.2019.03.005.
Malek S. N., Seng C.K., Zakaria Z., Ali N.A., Ibrahim H., Jalil M.N. The Essential Oil of Curcuma inodora aff. Blatter from Malaysia. Journal of Essential Oil Research. 2006, 18, 281-283. https://doi.org/10.1080/10412905.2006.9699088.
Djouhari, A., Boualem, S., Boudarene, L., Baaliouamer, A. Geographic’s variation impact on chemical composition, antioxidant and anti-inflammatory activities of essential oils from woods and leaves of Tetraclinis articulate (Vahl) Masters. Industrial Crops and Products. 2015, 63:138-146. https://doi.org/10.1016/j.indcrop.2014.10.018.
Adams R. P. Identification of essential oil components by gas chromatography/mass spectrometry. Fourth ed. Allured Publishing Corporation Carol Stream, Illinois,2007.
Wiegand I, Hilpert K, Hancock R. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols.2008,3:163-175. DOI:10.1038/nprot.2007.521.
Mothana R A, Noman O M, Al-Sheddi E S, Khaled JM, Al-Said M S, Al-Rehaily A J Chemical composition, in vitro antimicrobial, free-radical scavenging, antioxidant activities of essential oil of Leucas inflata Benth. Molecules.2017,22,367. DOI:10.3390/molecules22030367.
Li Q, Wang X, Chen J, Liu, C, Li T, McClementes DJ, Dai T, Liu J. Antioxidant activity of proanthocyanidins-rich fractions from Choreospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chemistry. 2016,208,309-317. DOI: 10.1016/j.foodchem.2016.04.012.
Murtuza S, Manjunatha B K. In-vitro and in-vivo evaluation of anti-inflammatory potency Mesua ferrea, Saraca asoca, Viscum album & Anthocephalus cadamba in murine macrophages raw 264.7 cell lines and Wistar albino rats. Beni-Seuf University Journal of Basic and Applied Sciences.2018,.7,719-723. https://doi.org/10.1016/j.bjbas.2018.10.001.
Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017,7, Article number: 42717. DOI: 10.1038/srep42717.
Morris G M, Ruth H, Lindstrom W, et al. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 2009, 30:2785–2791. DOI:10.1002/jcc.21256.
Panda D, Bhattacharya D, Gao QH, et al. Identification of agents targeting FtsZ assembly. Future Medicinal Chemistry.2016,8,10,111-32. DOI: 10.4155/fmc-2016-0041.
Jeong S J, Park J G, Oh G T. Peroxiredoxins as potential targets for cardiovascular disease. Antioxidants. 2021,10,8,1244. DOI: 10.3390/antiox10081244.
Lipfert P, Seitz R, Arndt J O.Studies of local anesthetic action on natural spike activity in the aortic nerve of cats. Anesthesiology.1987, 66,2. DOI: 10.1097/00000542-198702000-00016.
BIOVIA D S .Discovery Studio Modeling Environment, Release 2017, San Diego. In: Dassault Systèmes,2016.
Eddin L J, Jha N K, et al. Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of ?-Bisabolol. Nutrients.2022,14,1370. DOI: 10.3390/nu14071370.
Toscano-Garibay J D, Alba M A, Navarrete J S, Garcia M M, Flores –Estrada J J, Moreno-Eutimio M A, Espinosa J J–Aguirre, Gonzalez-Avila M. & Ruiz-Perez N J . Antimutagenic and Antioxidant activity of the essential oils of Citrus sinesis and Citrus latifolia. Scientific Reports.2017,7,11479. DOI:10.1038/s41598-017-11818-5.
Kulkarni S. A., Naagarajan, S. K., Ramesh V., Palaniyandi V., Selvam S. P., Madhavan T. Computational evaluation of major components from plant essential oil as potent inhibitors of SARS-CoV-2 spike proteins. Journal of Molecular Structure.2020,1221,128823. DOI: 10.1016/j.molstruc.2020.128823.
Park J, Han F, Lee Ik-Soo. Biotransformation of (?)-?-Bisabolol by Absidia coerulea. Molecules.2022, 27,881. DOI: 10.3390/molecules27030881.
. Bezerra C F, Geraldo de A Junior J., et al. Antifungal Effect of Liposomal ? –Bisabolol and When Associated with Fluconazole. Cosmetics. 2021,8,28. https://doi.org/10.3390/cosmetics8020028.
Javed H, Nagoor Meeran M F, Azimullah S, Eddin L B, Dwivedi V D, Jha N and Oza S. ? –Bisabolol, a Dietary Bioactive Phytochemical Attenuates Dopaminergic Neurodegeneration through Modulation of Oxidative Stress, Neuroinflammation and Apoptosis in Rotenone –Induced Rat Model of Parkinson’s Disease. Biomolecules.2020,10,1421. DOI: 10.3390/biom10101421.
Alminderej F, Bakari S, Almundarij T, Snoussi M, Aouadi K and Kadri A. Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. Plants.2020,9,1354. DOI: 10.3390/plants9111534.
Downloads
Published
Versions
- 01-04-2023 (2)
- 14-01-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Pravinkumar Nagore, Popat Lokhande, Haniph Mujawar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).