Effects of plant essential oils and their constituents on Helicobacter pylori : A Review
DOI:
https://doi.org/10.14719/pst.2200Keywords:
Essential oil, Chemical constituent, Antibacterial activity, Inhibition of gene expression, Mode of action, Helicobacter pyloriAbstract
Essential oils (EOs) obtained from different medicinal and aromatic plant families by steam distillation have been used in the pharmaceutical, food, and fragrance industries. The plant EOs and their broad diversity of chemical components have attracted researchers worldwide due to their human health benefits and antibacterial properties, especially their treatment of Helicobacter pylori infection. Since H. pylori has been known to be responsible for various gastric and duodenal diseases such as atrophic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma, several combination antibiotic therapies have been increasingly used to enhance the eradication rate of the bacterial infection. However, in the last decades, the efficacy of the therapies has decreased significantly due to widespread emergence of multidrug resistant strains of H. pylori. In addition, side-effects from commonly used antibiotics and recurrence of the bacterial infection have drawn public health concern globally.
Therefore, this review focuses on in vitro effects of plant EOs and their bioactive constituents on the growth, cell morphology and integrity, biofilm formation, motility, adhesion, and urease activity of H. pylori. Their inhibitory effects on expression of genes necessary for growth and virulence factor productions of the bacterial pathogen are also discussed. Further in vivo and clinical evaluations are required so that plant EOs and their bioactive constituents can be possibly applicable in pharmacy or as adjuvants to the current therapies of H. pylori infection.
Downloads
References
Lawless J. The Encyclopedia of essential oils: the complete guide to the use of aromatic oils in aromatherapy, herbalism, health, and well being. 2014, Harper Thorsons (HarperCollins Publishers), London, United Kingdom. . ISBN 10 0007145187
Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal JM, Cornwell T, Pastor I, Fridlender B. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522–531. https://doi.org/10.1016/S0167-7799(02)02080-2.
Bonamin F, Moraes TM, Dos Santos RC, Kushima H, Faria FM, Silva MA, Junior IV, Nogueira L, Bauab TM, Souza Brito AR, da Rocha LR, Hiruma-Lima CA. The effect of a minor constituent of essential oil from Citrus aurantium: The role of ?-myrcene in preventing peptic ulcer disease. Chem Biol Interact. 2014;212:11–19. https://doi.org/10.1016/j.cbi.2014.01.009.
Memariani Z, Sharifzadeh M, Bozorgi M, Hajimahmoodi M, Farzaei MH, Gholami M, Siavoshi F, Saniee P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: role of ?-pinene. J Tradit Chin Med. 2017;37(1):57–63. https://doi.org/10.1016/S0254-6272(17)30027-4.
Rozza AL, de Mello Moraes T, Kushima H, Tanimoto A, Marques MO, Bauab TM, Hiruma-Lima CA, Pellizzon CH. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and ?-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem Biol Interact. 2011;189(1–2):82–89. https://doi.org/10.1016/j.cbi.2010.09.031.
Rozza AL, de Mello Moraes T, Kushima H, Nunes DS, Hiruma-Lima CA and Pellizzon CH. Involvement of glutathione, sulfhydryl compounds, nitric oxide, vasoactive intestinal peptide, and heat-shock protein-70 in the gastroprotective mechanism of Croton cajucara Benth. (Euphorbiaceae) essential oil. J Med Food. 2011;14(9):1011–1017. https://doi.org/10.1089/jmf.2010.0173.
Bergonzelli G, Donnicola D, Porta N, Corthesy-Theulaz I. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob Agents Chemother.2003; 47(10):3240–3246. https://doi.org/10.1128/AAC.47.10.3240-3246.2003.
Kim SE, Memon A, Kim BY, Jeon H, Lee WK, Kang SC. Gastroprotective effect of phytoncide extract from Pinus koraiensis pinecone in Helicobacter pylori infection. Sci Rep. 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-66603-8.
Ngan LTM, Dung PP, Nhi NVTY, Hoang NVM, Hieu TT. Antibacterial activity of ethanolic extracts of some Vietnamese medicinal plants against Helicobacter pylori, AIP Conf Proc. 2017;1878:020030. https://doi.org/10.1063/1.5000198.
Uyub AM, Nwachukwu IN, Azlan AA, Fariza SS. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Ethnobot Res Appl. 2010;8:95–106. https://doi.org/10.17348/era.8.0.95-106.
Abou Baker D. Plants against Helicobacter pylori to combat resistance: An ethnopharmacological review. Biotechnol Rep. 2020;26:e00470. https://doi.org/10.1016/j.btre.2020.e00470.
Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li S, Gan RY, Li HB. Natural products for the prevention and management of Helicobacter pylori infection. Compr Rev Food Sci Food Saf. 2018;17(4):937–952. https://doi.org/10.1111/1541-4337.12355.
Ngan LTM, Moon JK, Shibamoto T, Ahn YJ. Growth-inhibiting, bactericidal, and urease inhibitory effects of Paeonia lactiflora root constituents and related compounds on antibiotic-susceptible and-resistant strains of Helicobacter pylori. J Agric and Food Chem. 2012;60(36):9062–9073. https://doi.org/10.1021/jf3035034.
Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T, Mitsufuji S, Kodama T, Kashima K, Imanishi J. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter. 2003;8(3):207–215. https://doi.org/10.1046/j.1523-5378.2003.00146.x.
Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, Sly L, McConnell WI, Harper WE. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Evol Micr. 1989;39(4):397-405. https://doi.org/10.1099/00207713-39-4-397.
Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983;321(8336):1273–1275. https://doi.org/10.1016/S0140-6736(83)92719-8.
Montecucco C, Rappuoli R. Living dangerously: How Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Bio. 2001;2(6):457–466. https://doi.org/10.1038/35073084.
Smith SM, O’Morain C, McNamara D. Helicobacter pylori resistance to current therapies. Curr Opin Gastroenterol. 2019;35(1):6–13. https://doi.org/10.1097/MOG.0000000000000497.
Negrei C, Boda D. The Mechanisms of action and resistance to fluoroquinolone in Helicobacter pylori Infection, In Trends in Helicobacter pylori Infection, Roesler BM (eds), IntechOpen, 2014;349. https://doi.org/10.5772/57081.
Quek C, Pham ST, Tran KT, Pham BT, Huynh LV, Luu NB, Le TK, Quek K, Pham VH. Antimicrobial susceptibility and clarithromycin resistance patterns of Helicobacter pylori clinical isolates in Vietnam. F1000Res. 2016;5:671. https://doi.org/10.12688/f1000research.8239.1.
Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H, Rao LV, Habibullah CM, Sechi LA, Ahmed N. Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob. 2005;4:1–7. https://doi.org/10.1186/1476-0711-4-20.
Xu Y, Lian DW, Chen YQ, Cai YF, Zheng YF, Fan PL, Ren WK, Fu LJ, Li YC, Xie JH, Cao HY, Tan B, Su ZR, Huang P. In vitro and in vivo antibacterial activities of patchouli alcohol, a naturally occurring tricyclic sesquiterpene, against Helicobacter pylori infection. Antimicrob Agents Chemother. 2017;61:e00122-17. https://doi.org/10.1128/AAC.00122-17.
Hanoglu A, Hanoglu D, Suer K, Baser HC, Ozkum Yavuz D, Sanl?dag T. Antimicrobial activity of the essential oil of Thymus capitatus against Helicobacter pylori. Acta Pol Pharm. 2020;77(1):155–160. https://doi.org/10.32383/appdr/115518.
Eftekhar F, Nariman F, Yousefzadi M, Hadian J, Ebrahimi SN. Anti-Helicobacter pylori activity and essential oil composition of Thymus caramanicus from Iran. Nat Prod Commun. 2009;4(8):1139–1142. https://doi.org/10.1177/1934578X0900400825.
Dawoud GT, Ismaei T. Studies of some medicinal plants act as anti-Helicobacter pylori. J Drug Res Egypt. 2017;38 (1):67–79.
Korona-Glowniak I, Glowniak-Lipa A, Ludwiczuk A, Baj T, Malm A. The In vitro Activity of Essential Oils against Helicobacter pylori Growth and Urease Activity. Molecules. 2020;25 (3):586. https://doi.org/10.3390/molecules25030586.
Eftekhari M, Ardekani MRS, Amin M, Attar F, Akbarzadeh T, Safavi M, Karimpour-razkenari E, Amini M, Isman M, Khanavi M. Oliveria decumbens, a bioactive essential oil: Chemical composition and biological activities. Iran J Pharm Res. 2019;18(1):412.
Dandlen SA, Lima AS, Mendes MD, Miguel MG, Faleiro ML, Sousa MJ, Pedro LG, Barroso JG, Figueiredo AC. Antimicrobial activity, cytotoxicity and intracellular growth inhibition of Portuguese Thymus essential oils. Rev Bras Farmacogn. 2011;21(6):1012–1024. https://doi.org/10.1590/S0102-695X2011005000155.
Lesjak M, Simin N, Orcic D, Franciskovic M, Knezevic P, Beara I, Aleksic V, Svircev E,Buzas K, Mimica-Dukic N. Binary and tertiary mixtures of Satureja hortensis and Origanum vulgare essential oils as potent antimicrobial agents against Helicobacter pylori. Phytother Res. 2016;30(3):476–484. https://doi.org/10.1002/ptr.5552.
Lian D, Xu Y, Deng Q, Lin X, Huang B, Xian S, Huang P. Effect of patchouli alcohol on macrophage mediated Helicobacter pylori digestion based on intracellular urease inhibition. Phytomedicine. 2019;65:153097. https://doi.org/10.1016/j.phymed.2019.153097.
Yu XD, Xie JH, Wang YH, Li YC, Mo ZZ, Zheng YF, Su JY, Liang Y, Liang JZ, Su ZR,Huang P. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease. Phytother Res. 2015;29(1):67–72. https://doi.org/10.1002/ptr.5227.
Menghini L, Leporini L, Tirillini B, Epifano F, Genovese S. Chemical composition and inhibitory activity against Helicobacter pylori of the essential oil of Apium nodiflorum (Apiaceae). J Med Food. 2010;13(1):228–230. https://doi.org/10.1089/jmf.2009.0010.
Andrade MA, Cardoso MG, Batista LR, Freire JM, Nelson DL. Antimicrobial activity and chemical composition of essential oil of Pelargonium odoratissimum. Rev Bras Farmacogn Braz J Pharmacogn. 2011;21(1):47–52. https://doi.org/10.1590/S0102-695X2011005000009.
Taha AM, Eldahshan OA. Chemical characteristics, antimicrobial, and cytotoxic activities of the essential oil of Egyptian Cinnamomum glanduliferum bark. Chem Biodivers. 2017:14(5):e1600443. https://doi.org/10.1002/cbdv.201600443.
Rocha Caldas GF, Oliveira AR, Araújo AV, Lafayette SS, Albuquerque GS, Silva-Neto JD, Costa-Silva JH, Ferreira F, Costa JGM, Wanderley AG. Gastroprotective mechanisms of the monoterpene 1,8-cineole (eucalyptol). PLoS One. 2015;10(8):e0134558. https://doi.org/10.1371/journal.pone.0134558.
Tan?inová D, Medo J, Mašková Z, Foltinová D. Árvay J. Effect of essential oils of Lamiaceae plants on the Penicillium commune. J Microbiol Biotechnol Food Sci. 2019;8(4):1111–1117. https://doi.org/10.15414/jmbfs.2019.8.4.1111-1117.
Esmaeili D, Mobarez AM, Tohidpour A. Anti-Helicobacter pylori activities of shoya powder and essential oils of Thymus vulgaris and Eucalyptus globulus. Open Microbiol J. 2012;6:65–69. https://doi.org/10.2174/1874285801206010065.
Knezevic P, Sabo VA, Simin N, Lesjak M, Mimica-Dukic N. A colorimetric broth microdilution method for assessment of Helicobacter pylori sensitivity to antimicrobial agents. J. Pharmaceut. Biomed. 2018;152:271–278. https://doi.org/10.1016/j.jpba.2018.02.003.
Kalpoutzakis E, Aligiannis N, Mentis A, Mitaku S, Charvala C. Composition of the essential oil of two Nepeta species and in vitro evaluation of their activity against Helicobacter pylori. Planta Med. 2001;67(09):880–883. https://doi.org/10.1055/s-2001-18851.
Sameh S, Al-Sayed E, Labib RM, Singab ANB. Comparative metabolic profiling of essential oils from Spondias pinnata (Linn. F.) Kurz and characterization of their antibacterial activities. Ind Crop Prod. 2019;137:468–474. https://doi.org/10.1016/j.indcrop.2019.05.060.
Duran N, Kaya DA. Synergistic activities of Hypericum perforatum L. and glabridin against drug resistant H. pylori isolates, In International Conference on Advanced Materials and Systems (ICAMS). The National Research & Development Institute for Textiles and Leather-INCDTP. 2018;87–92. https://doi.org/10.24264/icams-2018.I.12.
Zengin G, Menghini L, Di Sotto A, Mancinelli R, Sisto F, Carradori S, Cesa S, Fraschetti C, Filippi A, Angiolella L, Locatelli M, Mannina L, Ingallina C, Puca V, D’Antonio M, Grande R. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. Essential oil: A multidisciplinary study. Molecules. 2018;23(12):3266. https://doi.org/10.3390/molecules23123266.
Al-Sayed E. Unearthing the chemical composition of Taxodium distichum (L.) Rich. leaf essential oil and its antimicrobial activity. Ind Crop Prod. 2018;126:76–82. https://doi.org/10.1016/j.indcrop.2018.10.009.
Jung DH, Park MH, Kim CJ, Lee JY, Keum CY, Kim IS, Yun CH, Kim SK, Kim WH, Lee YC. Effect of ?-caryophyllene from cloves extract on Helicobacter pylori eradication in Mouse Model. Nutrients. 2020;12(4):1000. https://doi.org/10.3390/nu12041000.
Woo HJ, Yang JY, Lee MH, Kim HW, Kwon HJ, Park M, Kim SK, Park SY, Kim SH, Kim JB. Inhibitory effects of ?-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int J Mol Sci. 2020;21(3):1008. https://doi.org/10.3390/ijms21031008.
Vila R, Santana AI, Pérez-Rosés R, Valderrama A, Castelli MV, Mendonca S, Zacchino S, Gupta MB, Cañigueral S. Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of ?-bisabolol. Bioresour Technol. 2010;101(7):2510–2514. https://doi.org/10.1016/j.biortech.2009.11.021.
Gamal El-Din MI, Youssef FS, Ashour ML, Eldahshan OA, Singab ANB. Comparative analysis of volatile constituents of Pachira aquatica Aubl. and Pachira glabra Pasq., their anti-Mycobacterial and anti-Helicobacter pylori activities and their metabolic discrimination using chemometrics. J Essent Oil Bear Plants. 2018;21(6):1550–1567. https://doi.org/10.1080/0972060X.2019.1571950.
Jung SW, Thamphiwatana S, Zhang L, Obonyo M, Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PloS One. 2015;10(3):e0116519. https://doi.org/10.1371/journal.pone.0116519.
Luong Thi My Ngan, Antiviral and antimicrobial activities of Paeonia lactiflora root constituents and structurally related compounds against human rhinovirus and gastrointestinal bacteria, Doctoral dissertation, Seoul National University, South Korea , 2013;229.
Hung TT, Trang PT, Viet H, Lan NTM, Ngan LTM, Hieu TT. In vitro antimicrobial activity of hydrosol from Litsea cubeba (Lour.) Pers. against Helicobacter pylori and Candida albicans. Biomed Res Ther. 2020:7(6):3819–3828. https://doi.org/10.15419/bmrat.v7i6.610.
Yu M, Wang X, Ling F, Wang H, Zhang P, Shao S. Atractylodes lancea volatile oils attenuated Helicobacter pylori NCTC11637 growth and biofilm. Microb Pathog. 2019;135:103641. https://doi.org/10.1016/j.micpath.2019.103641.
Ardalan A, Vala MH, Sarie H, Aliahmadi A, McClements DJ, Rafati H. Formulation and evaluation of food-grade antimicrobial cinnamon oil nanoemulsions for Helicobacter pylori Eradication. J Bionanoscience. 2017:11(5):435–441. https://doi.org/10.1166/jbns.2017.1463.
Ruiz-Rico M, Moreno Y, Barat JM. In vitro antimicrobial activity of immobilised essential oil components against Helicobacter pylori. World J Microbiol Biotechnol. 2020;36(1):1–9. https://doi.org/10.1007/s11274-019-2782-y.
Preuss HG, Echard B, Enig M, Brook I, Elliott TB. Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol Cell Biochem. 2005;272(1–2):29–34. https://doi.org/10.1007/s11010-005-6604-1.
Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front Cell Infect Microbiol. 2016;6:159. https://doi.org/10.3389/fcimb.2016.00159.
Hathroubi S, Servetas SL, Windham I, Merrell DS, Ottemann KM. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol Mol Biol Rev. 2018;82(2):e00001-18. https://doi.org/10.1128/MMBR.00001-18.
Ozen F, Ekinci F, Korachi M. The inhibition of Helicobacter pylori infected cells by Origanum minutiflorum. Ind Crop Prod. 2014;58:329–334. https://doi.org/10.1016/j.indcrop.2014.04.037.
Reichling J. Anti-biofilm and virulence factor-reducing activities of essential oils and oil components as a possible option for bacterial infection control. Planta Med. 2020;86(08):520–537. https://doi.org/10.1055/a-1147-4671.
Yang TS, Liou ML, Hu TF, Peng CW, Liu TT. Antimicrobial activity of the essential oil of Litsea cubeba on cariogenic bacteria. J Essent Oil Res. 2013;25(2):120–128. https://doi.org/10.1080/10412905.2012.758602.
Mobley HLT, Mendz GL, Hazell SL. Helicobacter pylori: physiology and genetics, Washington (DC): ASM Press, 2001. https://doi.org/10.1128/9781555818005.
Nitharwal RG, Verma V, Dasgupta S, Dhar SK. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett. 2011;585(1):7–17. https://doi.org/10.1016/j.febslet.2010.11.018.
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J. 2016;39(1):14–23. https://doi.org/10.1016/j.bj.2015.06.002.
Chang WL, Yeh YC, Sheu BS. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci. 2018;25(1):1–9. https://doi.org/10.1186/s12929-018-0466-9.
Odenbreit S, Till M, Hofreuter D, Faller G, Haas R. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 1999;31(5):1537–1548. https://doi.org/10.1046/j.1365-2958.1999.01300.x.
Ansari S, Yamaoka Y. Role of vacuolating cytotoxin A in Helicobacter pylori infection and its impact on gastric pathogenesis. Expert Rev Anti-infect Ther. 2020;18(10):987–996. https://doi.org/10.1080/14787210.2020.1782739.
Wang HP, Zhu YL, Shao W. Role of Helicobacter pylori virulence factor cytotoxin-associated gene A in gastric mucosa-associated lymphoid tissue lymphoma. World J Gastroentero. 2013;19(45):8219. https://doi.org/10.3748/wjg.v19.i45.8219.
Li AL, Ni WW, Zhang QM, Li Y, Zhang X, Wu HY, Du P, Hou JC, Zhang Y. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol. 2020;64(1):23–32. https://doi.org/10.1111/1348-0421.12749.
Harmati M, Gyukity?Sebestyen E, Dobra G, Terhes G, Urban E, Decsi G, Mimica-Duki? N, Lesjak M, Simin N, Pap B, Nemeth IB, Buzas K. Binary mixture of Satureja hortensis and Origanum vulgare subsp. hirtum essential oils: In vivo therapeutic efficiency against Helicobacter pylori infection. Helicobacter. 2017;22(2):e12350. https://doi.org/10.1111/hel.12350.
Bhattamisra SK, Hooi LP, Shyan LP, Chieh LB, Candasamy M, Sahu PS. Effect of geraniol and clarithromycin combination against gastric ulcers induced by acetic acid and Helicobacter pylori in rats. Pharmacogn Res. 2019;11(4):356. https://doi.org/10.4103/pr.pr_21_19.
Downloads
Published
Versions
- 01-04-2023 (2)
- 22-02-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Thanh Hung Tran, Thi My Ngan Luong, Van Le Bui, Trung Hieu Tran
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).