Multivariate analysis in rice (Oryza sativa L.) germplasms for yield attributing traits
DOI:
https://doi.org/10.14719/pst.2231Keywords:
Oryza sativa L., Genetic variability, food security, principal component analysis, multivariate analysisAbstract
A study was conducted to evaluate the genetic diversity and relationships among sixty rice genotypes by assessing eleven morphological yield traits using principal component analysis (PCA) and cluster analysis at ANDUAT, Ayodhya (Uttar Pradesh), India. The results found significant variation among the genotypes, with some exhibiting higher values for certain traits which confirm genetic diversity. Cluster analysis revealed that Cluster V had the highest number of genotypes, while Cluster IV had the highest intra-cluster distance, suggesting that these genotypes would be useful for rice improvement. Principal component analysis revealed that the first two principal components, along with three other components, accounted for 75.11 percent of the total variability. Days to 50% flowering (DFF) in days was identified as the most accurate predictor of variability, followed by days to maturity (DM) in days, 1000 seed weight (TSW) in gm, and panicle length (PL) in cm. The principal component to be first (PC1) was linked with plant height (PH) and harvest index (HI) in gm, the second principal component (PC2) was linked with DFF and DM, the third (PC3) was linked with TSW and grains/panicle (GP) in number, the fourth (PC4) with panicles bearing per plant (PBP) in number and biological yield per plant (BY) in gramme, and the fifth principal component (PC5) is linked with PL and BY. The study identified several promising genotypes for various traits, including G.35, G.17, G.30, G.45, and G.46 for short plant height and G.60, G.40, G.54, G.55, and G.41 for high yield.
Downloads
References
Fukagawa NK. and Ziska LH. Rice: Importance for global nutrition. J. Nutr. sci and vitaminology. 2019; 65(Supplement): S2-S3. https://doi.org/10.3177/jnsv.65.S2
Naaz S, Pandey V, Yadav HK. Evaluation of genetic diversity in rice (Oryza sativa L. ssp. indica) accessions using SSR marker. Vegetos. 2022: 1-8. https://doi.org/10.1007/s42535-022-00378-3
Mia S, Ahmed NU, Islam MZ, Rashad MM, Islam MM, Zaman AM. Genetic diversity, and yield performance among T. Aman rice (Oryza sativa L.) landraces in Barishal region of Bangladesh. J. Cro. Sci. and Biotech. 2022; 25: 123–132. https://doi.org/10.1007/s12892-021-00117-1
Hasan S, Furtado A, Henry R. Analysis of Domestication Loci in Wild Rice Populations. Plants. 2023; 12(3): 489. https://doi.org/10.3390/plants12030489
Roy B, Sundarrao GS. Morphological Depiction of Seeds of Landraces of Rice (Oryza sativa L.). Int. J. Envi. and Climate Change. 2022; 12(11): 3010-25. https://doi.org/10.9734/ijecc%2F2022%2Fv12i111347
Kumari N, Kumar R, Kumar A. Genetic variability and, association of traits in mutant lines of rice (Oryza sativa L.) for submergence tolerance. Curr. J. Appl. Sci. Tech. 2019; 33(2): 1-7.
Fu YB. Understanding crop genetic diversity under modern plant breeding. Th. Appl. Gen. 2015; 128(11):2131-2142.
Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Gen. Res. International. 2015; 2015, Article ID 431487: 1-14. https://doi.org/10.1155/2015/431487
Kapoor C, Avasthe RK, Chettri PK, Gopi R, Kalita H. On-farm status and collection of rice (Oryza sativa L.) genetic resources of Sikkim Himalayas. Indi. J. Pl. Gen. Res. 2017; 30(1):48-54.
Sellamuthu R, Liu GF, Ranganathan CB, Serraj R. Genetic analysis, and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crops Research. 2011;124(1):46-58.
Mahalanobis PC. On the generalized distance in statistics. Nati. Insti. Sci. Indi. 1936; 2: 49-55.
Jegadeeswaran M, Manivannan A, Mohan S, Pavithradevi G, Salini AP, Anandakumar CR, Maheswaran M. Characterization of rice (Oryza sativa L.) landraces and cultivars using agro morphological traits. ORYZA-An Int. J. on Rice. 2017; 54(1): 89-96.
Shah ML, Yadav R. Response of rice varieties to age of seedlings and transplanting dates. Nepal Agric. Res. J. 2001:14-7. DOI: https://doi.org/10.3126/narj.v4i0.4858
Debsharma SK, Syed M, Ali M, Maniruzzaman S, Roy PR, Brestic M, Gaber A, Hossain A. Harnessing on Genetic Variability and Diversity of Rice (Oryza sativa L.) Genotypes Based on Quantitative and Qualitative Traits for Desirable Crossing Materials. Genes. 2023; 14(1): 10. https://doi.org/10.3390/genes14010010
Shiragudikar SK, Bharamagoudar G, Manohara KK, Malati SY. Insight Analysis of Deep Learning and a Conventional Standardized Evaluation System for Assessing Rice Crop's Susceptibility to Salt Stress during the Seedling Stage. SN Comp. Sci. 2023; 4(3): 262.
Spector P. An Introduction to the SAS system. Berkeley. Archived from the original on October. 2013; 12.
Burton GW, Devane DE. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material 1. Agro. j. 1953 Oct;45(10):478-81.
Faysal AS, Ali L, Azam MG, Sarker U, Ercisli S, Golokhvast KS, Marc RA. Genetic variability, character association, and path coefficient analysis in transplant Aman rice genotypes. Plants. 2022; 11(21): 2952. https://doi.org/10.3390/plants11212952
Gomez KA, Gomez AA. Statistical procedures for agricultural research. John Wiley & Sons; 1984: 17.
Kumar M, Kumar RR. Genetic Variability Parameters for Yield and Yield Related Traits in Rice (Oryza sativa L.) under Irrigated and Drought Stress Condition. Int. J. Curr. Microbiol. App. Sci. 2020; 9(2): 1137-1143. https://doi.org/10.20546/ijcmas.2020.902.133
Dhakal K, Yadaw RB, Baral BR, Pokhrel KR, Rasaily S. Agro-morphological and Genotypic Diversity among Rice Germplasms under Rainfed Lowland Condition. AGRIVITA, J. Agri. Sci. 2021; 43(3): 466-78. http://doi.org/10.17503/agrivita.v43i3.3026
Deepthi KP, Mohan YC, Hemalatha V, Yamini KN, Singh TV. Genetic variability and character association studies for yield and yield related, floral and, quality traits in maintainer lines of rice (Oryza sativa L.). The Pha. Inno. J. 2022; 11(2): 191-7.
Acevedo-Siaca LG, Coe R, Quick WP, Long SP. Evaluating natural variation, heritability and, genetic advance of photosynthetic traits in rice (Oryza sativa). Plant Breed. 2021; 140. P. 745–757. https://doi.org/10.1111/pbr.12965
Adhikari BN, Joshi BP, Shrestha J, Bhatta NR. Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). J. Agri. and Natu. Reso. 2018; 1(1):149-60.
Shrestha J, Subedi S, Kushwaha UK, Maharjan B. Evaluation of rice genotypes for growth, yield and yield components. J. Agri. and Natu. Reso. 2021 Sep; 4(2): 339-46. https://doi.org/10.3126/janr.v4i2.33967
Kumari S, Singh PK, Bisen P, Loitongbam B, Rai VP, Sinha B. Genetic diversity analysis of rice (Oryza sativa L.) germplasm through morphological markers. Inter. J. Agri, Envir. and Biores. 2018: 953-7.
Bernardo R. Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something blue. The genetics society. 2020; 125. P. 375–385.
Abebrese SO, Mustapha SA, Alex OK. Genetic Diversity and Evaluation of Assembled Rice (Oryza sativa L.) Germplasm for Breeding Purposes in Northern Ghana. Int. J. Pla. & Soil Sci. 2022: 2; 34(23) 1548-64. https://doi.org/10.9734/ijpss/2022/v34i232573
Naik M, Pillai MA, Saravanan S. Genetic diversity analysis for yield associated and quality traits in promising rice varieties of Tamil Nadu. IJBSM. 2021; 12(4). 361-369. DOI: https://doi.org/10.23910/1.2021.2300.
Rahman AK, Islam MM, Nadim MK, Akter SE, Alim SA, Noor MM. Genetic variability analysis of different yield contributing characters of cultivated T. Aman rice (Oryza sativa) varieties. J Biosci Agric Res. 2021; 27(01): 2258-66. https://doi.org/10.18801/jbar.270121.275
Srivastava N, Babu GS, Singh ON, Verma R, Pathak SK, Behra M, Jena D, Chanda M. Genetic variation, heritability and, diversity analysis of exotic upland rice (Oryza sativa L.) germplasms based on quantitative traits. The Pharma Innova. J. 2017; 6 (12): 316-20.
Sarankumar C, Dhasarathan M, Kavithamani D, Vanniarajan C, Kokiladevi E, Ravikesavan R, Senthil N. Assessment of genetic variability, heritability and, genetic advance in backcross population of BC1F1, BC2F1 and BC2F2 in maize. Ele. J. Pla. Bre. 2019;10(2): 576-84.
Rasel M, Hassan L, Hoque MI, Saha SR. Estimation of genetic variability, correlation and, path coefficient analysis in local landraces of rice (Oryza sativa L.) for the improvement of salinity tolerance. J. of the Bangladesh Agri. Uni. 2018; 16(1): 41-6.
Islam MA, Raffi SA, Hossain MA, Hasan AK. Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progressive Agri. 2015; 26(1): 26-31. https://doi.org/10.3329/pa.v26i1.24511
Dey S, Kumar R, Battan KR, Chhabra AK, Reddy AL. Study of coefficient of variation, heritability and, genetic advance for different traits of rice genotypes grown under aerobic condition. Int J. of Bio-reso. and Stre. Manag. 2021; 12(5): 426-30. http://dx.doi.org/10.23910/1.2021.2290a
Alam MS, Hassan L, Islam MM, Begum SN, Islam SN. Evaluation of habitual rice (Oryza sativa L.) landraces of Bangladesh through different genetic parameters. Int. J. of Inno. and Sci. Rese. 2014; 11(2): 494-502.
Tiwari D. N., Tripathi S. R., Tripathi M. P., Khatri N. and Bastola B. R. Genetic Variability and Correlation Coefficients of Major Traits in Early Maturing Rice under Rainfed Lowland Environments of Nepal. Adva. in Agri. 2019; Article ID 5975901. 1-9. https://doi.org/10.1155/2019/5975901
Asins MJ. Present and future of quantitative trait locus analysis in plant breeding. Plant breeding. 2002; 121(4): 281-91. https://doi.org/10.1046/j.1439-0523.2002.730285.x
Palaniyappan S, Arunachalam P, Banumathy S, Mini ML, Muthuramu S. Genetic divergence and, clustering studies in advanced breeding lines of rice (Oryza sativa L.). Ele. J. Pla. Bre. 2020; 11(02): 499-504.
Mishra A, Shahani M, Bijarania S. Genetic Divergence Studies of Submergence Tolerant Rice Genotypes. Int. J. Envi. and Clima. Chan. 2023; 13(3): 195-9. https://doi.org/10.9734/ijecc/2023/v13i31697
Singh SK, Pandey V, Mounika K, Singh DK, Khaire AR, Habde S, Majhi PK. Study of genetic divergence in rice (Oryza sativa L.) genotypes with high grain zinc using Mahalanobis’ D2 analysis. Electro. J, of Pl. Breed. 2020; 11(02): 367-72. https://doi.org/10.37992/2020.1102.065
Perween S, Kumar A, Prasad BD, Choudhary M. Assessment of genetic diversity in rice (Oryza sativa L.) under irrigated and drought stress condition. Curr. J. Appl. Sci. and Tech. 2020; 39(1): 112-25.
Verma SP, Pathak VN, Verma OP. Interrelationship between yield and its contributing traits in wheat (Triticum aestivum L.). Int. J Curr. Microbiol. App. Sci. 2019; 8(2): 3209-15. https://doi.org/10.20546/ijcmas.2019.802.375
Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Shabanimofrad M, Latif MA. Agro-morphological characterization and assessment of variability, heritability, genetic advance and, divergence in bacterial blight resistant rice genotypes. South Afri. J. Bot. 2013; 86: 15-22. https://doi.org/10.1016/j.sajb.2013.01.004
Debsharma SK, Syed M, Ali M, Maniruzzaman S, Roy PR, Brestic M, Gaber A, Hossain A. Harnessing on Genetic Variability and Diversity of Rice (Oryza sativa L.) Genotypes Based on Quantitative and Qualitative Traits for Desirable Crossing Materials. Genes. 2023; 14(1): 10. https://doi.org/10.3390/genes14010010
Singh SK, Singh P, Korada M, Khaire AR, Singh DK, Habde SV, Majhi PK, Naik R. Character association and path-coefficient analysis for yield and yield-related traits in 112 genotypes of rice (Oryza sativa L.). Cur J App Sci Tech. 2020; 39:545-556.
Downloads
Published
Versions
- 01-01-2024 (2)
- 11-10-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Satya Prakash, S Sumanth Reddy, Sandeep Chaudhary, SC Vimal, Adesh Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).