This is an outdated version published on 23-11-2023. Read the most recent version.
Forthcoming

Effect of salicylic acid on cowpea seedlings under saline stress

Authors

DOI:

https://doi.org/10.14719/pst.2237

Keywords:

Aminoacids, Proline, Glycine-bethayne, Salinity, Carbohydrates

Abstract

The aim of this work was applying salicylic acid (SA) in cowpea seedlings under saline stress. The experiment took place in the seed laboratory of the Universidade Federal Rural da Amazônia with a completely randomized experimental design in a 2 x 2 x 3 factorial scheme, with two bean cultivars (Canapu and Pingo-de-ouro), two levels of salicylic acid (0, and 0.50 mM) and three salt stress levels (0, 25, 50 mM). The seeds were previously soaked in salicylic acid (0 and 0.50 mM) for a period of 12 hours and then placed in germitest paper rolls for treatments with NaCl (0, 25, 50 mM) for a period of 12 days at room temperature constant 27 °C. There was a significant effect of cultivars, AS dose and NaCl concentrations and their interactions on most of the analyzed variables. Root and leaf proline concentrations were higher in pingo-de-ouro cultivar, Canapu cultivar had better performance in biomass accumulation. Salicylic acid reduced proteins in the leaves by 13.33%, while in the root there was an increase of 12.61%, ammonium concentrations reduced in the roots by 11.9%. When applied to salinity (25 and 50 mM) there was an increase of proteins in the leaves 40.83% and 27.48% respectively, and a reduction of amino acids of 30.24 and 25.24% in NaCl dosages (25 and 50 mM) respectively. Salinity reduced biomass accumulation and interfered with cellular solute production. However, the application of salicylic acid promoted salt stress tolerance in Canapu cultivar.

Downloads

Download data is not yet available.

References

Oliveira GP de, Morais OM. Testes de vigor para determinação da maturidade fisiológica de sementes de feijão-caupi. Cultura Agronômica: Revista de Ciências Agronômicas [Internet]. 2017;26(2):103–114. Available from: https://doi.org/10.32929/2446-8355.2017v26n2p103-114.

Silva DA da, Albuquerque J de AA de, Alves JMA, Rocha PRR, Medeiros RD de, Finoto EL, et al. Characterization of weed in rotated area of maize and cowpea in direct planting. Scientia Agropecuaria [Internet]. .2018;9(1):7–15. Available from: http://dx.doi.org/10.17268/sci.agropecu.2018.01.01.

Barros MA, Rocha M de M, Gomes RLF, Silva KJD, Neves AC das. Adaptabilidade e estabilidade produtiva de feijão-caupi de porte semiprostrado. Pesquisa Agropecuária Brasileira [Internet]. 2013;48(4):403–410. Available from: https://doi.org/10.1590/S0100-204X2013000400008.

Guimarães DG, Oliveira LM, Guedes MO, Ferreira GFP, Prado TR, Amaral CLF. Desempenho da cultivar de feijão-caupi BRS Novaera sob níveis de irrigação e adubação em ambiente protegido. Cultura Agronômica: Revista de Ciências Agronômicas [Internet]. 2020;29(1):61–75. Available from: https://doi.org/10.32929/2446-8355.2020v29n1p61-75.

Gonçalves ZS, Lima LKS. Desempenho agronômico e diversidade genética de linhagens de feijão-caupi nas condições do Recôncavo da Bahia. Journal of Biotechnology and Biodiversity [Internet]. 2021;9(3):285–294. Available from: https://doi.org/10.20873/jbb.uft.cemaf.v9n3.goncalves.

Oliveira FDA de, Medeiros JF de, Alves RDC, Lima LA, Santos ST dos, Régis LRDL. Produção de feijão caupi em função da salinidade e regulador de crescimento. Revista Brasileira de Engenharia Agrícola e Ambiental [Internet]. 2015;19(11):1049–1056. Available from: https://doi.org/10.1590/1807-1929/agriambi.v19n11p1049-1056.

Costa EM da, Nóbrega RSA, Carvalho F de, Trochmann A, Ferreira L de VM, Moreira FM de S. Promoção do crescimento vegetal e diversidade genética de bactérias isoladas de nódulos de feijão-caupi. Pesquisa Agropecuária Brasileira [Internet]. 2013;48(9):1275–1284. Available from: https://doi.org/10.1590/S0100-204X2013000900012.

Araújo É de O, Mauad M, Tadeu HC, Filho HÁ de L, Silva JAF da, Cardoso JA. Nutritional Status of Cowpea Plants Inoculated with Bradyrhizobium and Azospirillum brasilense in Associated with Phosphate Fertilization in Soil Amazonian. Journal of Experimental Agriculture International [Internet]. 2018;23(5):1–13. Available from: https://doi.org/10.9734/JEAI/2018/42145.

Saboya R de CC, Borges PRS, Saboya LMF, Monteiro FP dos R, Souza SEA de, Santos AF dos, Santos ER dos. Resposta do feijão-caupi a estirpes fixadoras de nitrogênio em Gurupi-TO. Journal of Biotechnology and Biodiversity [Internet]. 2013;4(1):40–48. Available from: https://doi.org/10.20873/jbb.uft.cemaf.v4n1.saboya.

Dutra AF, Melo AS de, Filgueiras LMB, Silva ÁRF, Oliveira IM de, Brito MEB. Parâmetros fisiológicos e componentes de produção de feijão-caupi cultivado sob deficiência hídrica. Revista Brasileira de Ciências Agrárias [Internet]. 2015;10(2):189–197. Available from: https://doi.org/10.5039/agraria.v10i2a3912.

Tagliaferre C, G. Guimarães DU, Gonçalves LJ, Farias Amorim CH, Matsumoto SN, D’Arêde LO. Produtividade e tolerância do feijão caupi ao estresse salino. IRRIGA [Internet]. 2018;23(1):168–179. Available from: https://doi.org/10.15809/irriga.2018v23n1p168.

Leite JVQ, Fernandes PD, Oliveira WJ de, Souza ER de, Santos DP dos, Santos CS dos. Efeito do estresse salino e da composição iônica da água de irrigação sobre variáveis morfofisiológicas do feijão caupi. Revista Brasileira de Agricultura Irrigada [Internet]. 2017;11(6):1825–1833. Available from: https://doi.org/10.7127/rbai.v11n600630.

Brito RR de, Filho HG, Saad JCC, Ribeiro VQ, Oliveira SEM. Critérios de manejo na irrigação do feijoeiro em solo de textura arenosa. IRRIGA [Internet]. 2015;20(2):334–347. Available from: https://doi.org/10.15809/irriga.2015v20n2p334.

Dalchiavon FC, Neves G, Haga KI. Efeito de stresse salino em sementes de Phaseolus vulgaris. Revista de Ciências Agrárias [Internet]. 2016;39(3):404–412. Available from: https://doi.org/10.19084/RCA15161.

Oliveira F de A de, Oliveira MKT de, Lima LA, Alves R de C, Régis LR de L, Santos ST dos. Estresse salino e biorregulador vegetal em feijão caupi. IRRIGA [Internet]. 2017;22(2):314–329. Available from: https://doi.org/10.15809/irriga.2017v22n2p314-329.

Oliveira WJ de, Souza ER de, Santos HRB, Silva ÊF de F, Duarte HHF, Melo DVM de. Fluorescência da clorofila como indicador de estresse salino em feijão caupi. Revista Brasileira de Agricultura Irrigada [Internet]. 2018;12(3):2592–2603. Available from: https://doi.org/10.7127/rbai.v12n300700.

Lima GS de L, Dias AS, Soares LA dos A, Gheyi HR, Nobre RG, Silva AAR da. Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias [Internet]. 2019;42(1):214-225. Available from:https://doi.org/10.19084/RCA18123.

Sousa GG de, Viana TV de A, Lacerda CF de, Azevedo BM de, Silva GL da, Costa FRB. Estresse salino em plantas de feijão-caupi em solos com fertilizantes orgânicos. Revista Agroambiente [Internet]. 2014;8(3):359-367. Available from: https://doi.org/10.5327/Z1982-8470201400031824.

Gomes Filho A, Nascimento Rodrigues E, Castro Rodrigues T, Júnior Neres Santos, V, Ferreira Alcântara S, Neres de Souza F. Estresse hídrico e salino na germinação de sementes de feijão-caupi cv. BRS Pajeú. Colloquium agrariae [Internet]. 2019;15(4):60–73. Available from: https://doi.org/10.5747/ca.2019.v15.n4.a312.

Nóbrega JS, Silva TI da, Ribeiro JEDS, Vieira LDS, Figueiredo FRA, Fátima RT de, et al. Salinidade e Ácido Salicílico no Desenvolvimento Inicial de Melancia. Revista Desafios [Internet]. 2020;7(2):162-171. Available from: http://dx.doi.org/10.20873/ufv7-8169.

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany [Internet]. 201;364(8):2255–2268. Available from: https://doi.org/10.1093/jxb/ert085.

Silva AAR da, Lima GS de, Azevedo CAV de, Veloso LL de SA, Gheyi HR. Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga [Internet]. 2020;33(4):092–1101. Available from: https://doi.org/10.1590/1983-21252020v33n424rc.

Sá FV da S, Paiva EP de, Torres SB, Brito MEB, Nogueira NW, Frade LJG, et al. Seed germination and vigor of different cowpea cultivars under salt stress. Comunicata Scientiae [Internet]. 2017;7(4):450. Available from: https://doi.org/10.14295/cs.v7i4.1541.

Monteiro JG, Cruz FJR, Nardin MB, Santos DMM dos. Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa Agropecuária Brasileira [Internet]. 2014;49(1):18–25. Available from: https://doi.org/10.1590/S0100-204X2014000100003.

J Burritt D. Proline and the Cryopreservation of Plant Tissues: Functions and Practical Applications. In: Katkov I. Current Frontiers in Cryopreservation. InTech [Internet]; 2012. pág. 415-430. Available from: https://doi.org/10.5772/36249.

Zondlo NJ. Aromatic–Proline Interactions: Electronically Tunable CH/? Interactions. Accounts of Chemical Research [Internet]. 2013;46(4):1039–1049. Available from: https://doi.org/10.1021/ar300087y.

Farias OR de, Cruz JMF de L, Gomes R dos SS, Nascimento LC do, Bruno R de LA, Arriel NH de C. Ocorrência de fungos e qualidade fisiológica de sementes de algodoeiro produzidas na Paraíba, Brasil. Revista Em Agronegócio e Meio Ambiente [Internet]. 2022;15(2):1–13. Available from: https://doi.org/10.17765/2176-9168.2022v15n2e8723.

Santos Junior JL dos, Oliveira MF da C, Silva EC da. Acúmulo de solutos orgânicos em mudas de Ceiba glaziovii (Kutze) Kum. em resposta à seca intermitente. Scientia Plena [Internet]. 2020;16(1). Available from: https://doi.org/10.14808/sci.plena.2020.011201.

Shaki F, Maboud HE, Niknam V. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biology [Internet]. 2018;13: 16–22. Available from: https://doi.org/10.1016/j.cpb.2018.04.001.

Oliveira LM de, Silva JN da, Coelho CCR, Neves MG, Silva RTL da, Oliveira Neto CF de. Pigmentos fotossintetizantes, aminoácidos e proteínas em plantas jovens de graviola submetidas ao déficit hídrico. Revista Agroecossistemas [Internet]. 2013;5(1):39. Available from: http://dx.doi.org/10.18542/ragros.v5i1.1409.

Askari E, Ehsanzadeh P. Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologiae Plantarum [Internet]. 2015;37(2):4. Available from: https://doi.org/10.1007/s11738-014-1762-y.

Mazzuchelli EHL, Souza GM, Pacheco AC. Rustificação de mudas de eucalipto via aplicação de ácido salicílico. Pesquisa Agropecuária Tropical [Internet]. 2014;44(4):443–450. Available from: https://doi.org/10.1590/S1983-40632014000400012.

Furquim LC, Santos MP dos, Andrade CAO de, Oliveira LA de, Evangelista AWP. Relação entre plantas nativas do Cerrado e água. Científic@ - Multidisciplinary Journal [Internet]. 2018;5(2):146–156. Available from: https://doi.org/10.29247/2358-260X.2018v5i2.p146-156.

Souza Guimarães P, Sarto Rocha D, Paterniani MEAGZ. Conteúdo de carboidrato foliar em híbridos de milho submetidos à restrição hídrica. Evidência [Internet]. 2019;19(2):93–112. Available from: https://doi.org/10.18593/eba.v19i1.20201.

Calvet ASF, Pinto CDM, Morais Lima RE, Moreno Maia-Joca RP, Bezerra MA. Crescimento e acumulação de solutos em feijão-de-corda irrigado com águas de salinidade crescente em diferentes fases de desenvolvimento. Irriga [Internet]. 2012;18(1):148. Available from: https://doi.org/10.15809/irriga.2013v18n1p148.

Farooq M, Hussain M, Wakeel A, Siddique KHM. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development [Internet]. 2015;35(2):461–481. Available from: https://doi.org/10.1007/s13593-015-0287-0.

Mansour MMF, Ali EF. Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiologiae Plantarum [Internet]. 2017;39(2):56. Available from: https://doi.org/10.1007/s11738-017-2357-1.

Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. Frontiers in Plant Science [Internet]. 2019;10. Available from: https://doi.org/10.3389/fpls.2019.00230.

Santos AL, Cova AMW, Silva MG da, Santos AAA, Pereira J de S, Gheyi HR. Crescimento e conteúdo de solutos orgânicos em couve-flor cultivada com água salobra em sistema hidropônico. Water Resourcesand Irrigation Management [Internet]. 2021;10(1-3):38–50. Available from: https://doi.org/10.19149/wrim.v10i1-3.2640.

Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, et al. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research [Internet]. 2015;126(2–3):221–235. Available from: https://doi.org/10.1007/s11120-015-0125-x.

Khan MIR, Asgher M, Khan NA. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry [Internet]. 2014;80:67–74. Available from: https://doi.org/10.1016/j.plaphy.2014.03.026.

Farhangi-Abriz S, Alaee T, Tavasolee A. Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere [Internet]. 2019;9:69–71. Available from: https://doi.org/10.1016/j.rhisph.2018.11.009.

Garg N, Bharti A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza [Internet]. 2018;28(8):727–746. Available from: https://doi.org/10.1007/s00572-018-0856-6.

Ribeiro RC, Dantas BF, Matias JR, Pelacani CR. Efeito do Estresse Salino na Germinação e Crescimento Inicial de Plântulas de Erythrina velutina Willd. (Fabaceae). Gaia Scientia [Internet]. 2017;11(4). Available from: https://doi.org/10.22478/ufpb.1981-1268.2017v11n4.35471.

Cardoso MN, Araújo AG de, Oliveira LAR, Cardoso BT, Muniz AVC da S, Santos PSN dos, et al. Proline synthesis and physiological response of cassava genotypes under in vitro salinity. Ciência Rural [Internet]. 2019;49(6). Available from: https://doi.org/10.1590/0103-8478cr20170175.

Ahmad P, Alyemeni MN, Ahanger MA, Egamberdieva D, Wijaya L, Alam P. Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity. Russian Journal of Plant Physiology [Internet]. 2018;65(1):104–114. Available from: https://doi.org/10.1134/S1021443718010132.

Silva TI da, Silva J de S, Dias MG, Martins JV da S, Ribeiro WS, Dias TJ. Salicylic acid attenuates the harmful effects of salt stress on basil. Revista Brasileira de Engenharia Agrícola e Ambiental [Internet]. 2022;26(6):399–406. Available from: https://doi.org/10.1590/1807-1929/agriambi.v26n6p399-406.

El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AME, Ali HM, Elshikh MS. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Frontiers in Physiology [Internet]. 2017; 8. Available from: https://doi.org/10.3389/fphys.2017.00716.

Miranda R de S, Mesquita RO, Costa JH, Alvarez-Pizarro JC, Prisco JT, Gomes-Filho E. Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor. Plant and Cell Physiology [Internet]. 2017;58(3):522–536. Available from: https://doi.org/10.1093/pcp/pcw231.

Teixeira DT de F, Nogueira GA dos S, Maltarolo BM, Ataíde WL da S, Neto CF de O. Alterações no metabolismo do nitrogênio em plantas de noni sob duas condições hídricas. Enciclopédia Biosfera [Internet]. 2015:89–106. Available from: http://dx.doi.org/10.18677/Enciclopedia_Biosfera_2015_073.

Published

23-11-2023

Versions

How to Cite

1.
Palheta de Sousa DJ, Marcelina da Silva T, Costa Carmona Junior MA, dos Santos Nogueira GA, de Araújo Brito AE, Castro de Souza L, Ferreira de Oliveira Neto C, Pamplona Albuquerque GD. Effect of salicylic acid on cowpea seedlings under saline stress. Plant Sci. Today [Internet]. 2023 Nov. 23 [cited 2024 Nov. 21];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2237

Issue

Section

Research Articles

Similar Articles

You may also start an advanced similarity search for this article.