This is an outdated version published on 19-03-2023. Read the most recent version.
Forthcoming

Variation of the phenolic composition and a-glucosidase inhibition potential of seeds, soaked seeds, and sprouts of four wild forms and four varieties of common bean (Phaseolus vulgaris)

Authors

  • Norma Almaraz-Abarca Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0003-1603-4865
  • Ana Isabel Ayala-Chaidez Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0003-4190-9192
  • Liliana Wallander-Compeán Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0002-6513-9463
  • Jose Antonio Ávila-Reyes Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0001-9552-957X
  • Eli Amanda Delgado-Alvarado Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0003-3835-9572
  • Néstor Naranjo-Jiménez Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional, 34220, México https://orcid.org/0000-0002-6918-7526
  • Imelda Rosas-Medina Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional, 07738, México
  • Aurelio Colmenero-Robles Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional, 07738, México

DOI:

https://doi.org/10.14719/pst.2250

Keywords:

Common bean, Phenolic profiles, α-glucosidase inhibition, Varieties, Wild forms

Abstract

The determination of the changes in the composition of bioactive phenolic compounds of germinating seeds which accumulate high levels of these compounds could contribute to the understanding of the germination mechanism and the development of markers for the selection of plant genotypes. In the current study, the changes in the phenolic composition and a-glucosidase inhibition activity, taking place during the germination of four wild forms and four varieties of common bean (Phaseolus vulgaris L.) from Durango Mexico, were determined. A total of 66 phenolic compounds (19 phenolic acids, 18 isoflavones, 18 flavonol glycosides, 3 flavonol aglycones, 3 flavones, 2 dihydroflavonoids, 2 chalcones and one non-identified type) were found by HPLC-DAD, which were differentially accumulated by the seeds, 24 h-soaked seeds, and 4 day-sprouts of each genotype. The accumulation of the flavonol aglycones, myricetin, quercetin and kaempferol was distinctive of the wild seeds. Soaking not only caused leaching and degradation but also triggered the synthesis of new phenolic compounds whereas germination diversified the composition of isoflavones and flavonol glycosides. The seeds of all genotypes analyzed were important inhibitors of a-glucosidase, improving their potential after soaking and germination. The results suggested that the structure rather than the concentration of the flavonoids and phenolic acids determined the inhibitory potential of a-glucosidase of samples. The principal component analysis and cluster analysis revealed HPLC-DAD phenolic profiles as genotype-specific chemomarkers at any of the states (seeds, soaked seeds, and sprouts). The results have wide implications on agronomy and food quality.

Downloads

Download data is not yet available.

References

Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants. 2020; 9(6):703. https://doi.org/10.3390/plants9060703

Tanase C, Bujor OC, Popa VI. Phenolic natural compounds and their influence on physiological processes in plants. In: Ross WR, editor. Polyphenols in plants. London: Academic Press; 2019. p. 45-58. https://doi.org/10.1016/B978-0-12-813768-0.00003-7

Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Sci. 2020; 296:110471. https://doi.org/10.1016/j.plantsci.2020.110471

Farooq M, Ahmad R, Shahzad M, Sajjad Y, Hassan A, Shah MM, et al. Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses. Sci Hortic. 2021; 287:110258. https://dx.doi.org/10.1016/j.scienta.2021.110258

Begum N, Hasanuzzaman M, Li Y, Akhtar K, Zhang C, Zhao T. Seed germination behavior, growth, physiology and antioxidant metabolism of four contrasting cultivars under combined drought and salinity in soybean. Antioxidants. 2022; 11(3):498. https://doi.org/10.3390/antiox11030498

Li H, Lyv Y, Zhou S, Yu S, Zhou J. Microbial cell factories for the production of flavonoids-barriers and opportunities. Bioresour Technol. 2022;360:27538. https://doi.org/10.1016/j.biortech.2022.127538

Muema FW, Liu Y, Zhang Y, Chen G, Guo M. Flavonoids from Selaginella doederleinii Hieron and their antioxidant and antiproliferative activities. Antioxidants. 2022; 11(6):1189. https://doi.org/10.3390/antiox11061189

Yang Q-Q, Gan R-Y, Ge Y-Y, Zhang D, Corke H. Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis, and factors affecting composition. Compr Rev Food Sci Food Saf. 2018; 17(6):1518-1539. https://doi.org/10.1111/1541-4337.12391

Sevgi K, Tepe B, Sarikurkcu C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem Toxicol. 2015; 77:12-21. https://doi.org/10.1016/j.fct.2014.12.006

Spínola VJ, Pinto P, Castilho PC. In vitro studies on the effect of watercress juice on digestive enzymes relevant to type 2 diabetes and obesity and antioxidant activity. J Food Biochem. 2017; 41(1):e12335. https://doi.org/10.1111/jfbc.12335

Vasavilbazo-Saucedo A, Almaraz-Abarca N, González-Ocampo HA, Ávila-Reyes JA, González-Valdez LS, Luna-González A, et al. Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose. CYTA-J Food. 2018;16(1):698-706. https://doi.org/10.1080/19476337.2018.1475424

Sun L, Miao M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit Rev Food Sci Nutr. 2020; 60(4):541–555. https://doi.org/10.1080/10408398.2018.1544883

Doria E, Campion B, Sparvoli F, Tava A, Nielsen E. Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compos Anal. 2012; 26(1-2):72-80. https://doi.org/10.1016/j.jfca.2012.03.005

Mojica L, Meyer A, Berhow MA, González de Mejía E. Bean cultivars (Phaseolus vulgarisL.) have similar high antioxidant capacity, in vitro inhibition of ?-amylase and ?-glucosidase while diverse phenolic composition and concentration. Food Res Int. 2015; 69:38-48. http://dx.doi.org/10.1Ol6/j.foodres.2014.12.007

Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem. 2012; 134(3):1312–1319. http://dx.doi.org/10.1016/j.foodchem.2012.03.020

Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez-Uribe JA. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 2013; 141(2):1497–1503. http://dx.doi.org/10.1016/j.foodchem.2013.04.010

Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, et al. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front Plant Sci. 2017;8:722. http://dx.doi.org/10.3389/fpls.2017.00722

González EMS, González EM, Márquez LMA. Vegetación y ecorregiones de Durango. Distrito Federal, México: Plaza y Valdés; 2007

Wallander-Compean L, Almaraz-Abarca N, Alejandre-Iturbide G, Uribe-Soto JN, Ávila-Reyes JA, Torres-Ricario R, et al. Variación fenológica y morfométrica de Phaseolus vulgaris (Fabaceae) de cinco poblaciones silvestres de Durango, México. Bot Sci. 2022; 100(3): 563-578. https://doi.org/10.17129/botsci.2981

Wallander CL. Variación epigenética, genética y morfológica de formas silvestres de frijol común, del Estado de Durango, México. [PhD thesis]. Durango, México: Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango, Instituto Politécnico Nacional; 2021

Skotti E, Anastasaki E, Kanellou G, Polissiou M, Tarantilis PA. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind Crops Prod. 2014; 53:46-54. https://doi.org/10.1016/J.INDCROP.2013.12.013

Campos GM, Markham KR. Structure Information from HPLC and on-line measured absorption spectra: flavones, flavanols and phenolic acids. Coimbra: Universidade de Coimbra; 2007

Kim JS, Hyun TK, Kim MJ. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on ?-glucosidase and ?-amylase activities. Food Chem. 2011; 124(4):1647-1651. https://doi.org/10.1016/j.foodchem.2010.08.020

Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem. 2006; 54(12):4436–4444. https://doi.org/10.1021/jf060185e

Alonso R, Aguirre A, Marzo F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000; 68(2):159-165.

Miano AC, Augusto PED. The hydration of grains: A critical review from description of phenomena to process improvements. Compr Rev Food Sci Food Saf. 2018; 17(2):352–370. https://doi.org/10.1111/1541-4337.12328

Pitura K, Arntfield SD. Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats. Food Chem. 2019; 272:26–32. https://doi.org/10.1016/j.foodchem.2018.07.220

López A, El-Naggar T, Dueñas M, Ortega T, Estrella I, Hernández T, et al. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 2013; 138(1):547–555. http://dx.doi.org/10.1016/j.foodchem.2012.10.107

Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, de Mejia E, Lila MA. Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J Agric Food Chem. 2005; 53(11):4615–4622. https://doi.org/10.1021/jf047802o

Medina-Medrano JR, Almaraz-Abarca N, González-Elizondo MS, Uribe-Soto JN, González-Valdez LS, Herrera-Arrieta Y. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Bot Stud. 2015; 56:24. https://doi.org/10.1186/s40529-015-0101-y

Ávila-Reyes JA, Almaraz-Abarca N, Chaidez-Ayala AI, Ramírez-Noya D, Delgado-Alvarado EA, Torres-Ricario R, et al. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers. Braz J Biol. 2018; 78(1):98-107. https://doi.org/10.1590/1519-6984.07516

Fusari CM, Nazareno MA, Locatelli DA, Fontana A, Beretta V, Camargo AB. Phytochemical profile and functionality of Brassicaceae species. Food Biosci. 2020; 36:100606. http://dx.doi.org/10.1016/j.fbio.2020.100606

Reyes-Martínez A, Almaraz-Abarca N, Gallardo-Velázquez T, González-Elizondo MS, Herrera-Arrieta Y, Pajarito-Ravelero A, et al. Evaluation of foliar phenols of 25 Mexican varieties of common bean (Phaseolus vulgaris L.) as antioxidants and varietal markers. Nat Prod Res. 2014; 28(23):2158-2162. https://doi.org/10.1080/14786419.2014.930855

Herrera MD, Reynoso-Camacho R, Melero-Meraz V, Guzmán-Maldonado SH, Acosta-Gallegos JA. Impact of soil moisture on common bean (Phaseolus vulgaris L.) phytochemicals. J Food Comp Anal. 2021; 99:103883. https://doi.org/10.1016/j.jfca.2021.103883

Cobaleda-Velasco M, Alanis-Bañuelos RE, Almaraz-Abarca N, Rojas-López M, González-Valdez LS, Ávila-Reyes JA, et al. Phenolic profiles and antioxidant properties of Physalis angulata L. as quality indicators. J Pharm Pharmacogn Res. 2017; 5(2):114-128. http://www.redalyc.org/articulo.oa?id=496053942005

Chiarello MD, Le Guerroué JL, Chagas CMS, Franco OL, Bianchini E, Joâo MJ. Influence of heat treatment and grain germination on the isoflavone profile of soy milk. J Food Biochem. 2006; 30(2):234–247. https://doi.org/10.1111/j.1745-4514.2006.00058.x

Mba OI, Kwofie EM, Ngadi M. Kinetic modeling of polyphenol degradation during common beans soaking and cooking. Heliyon. 2019; 5(5):e01613. https://doi.org/10.1016/j.heliyon.2019.e01613

Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 2016; 57(4):660–674. https://doi.org/10.1093/pcp/pcv186

Perez de Souza L, Garbowicz K, Brotman Y, Tohge T, Ferniea AR. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiol. 2019; 182(2):857–869. https://doi.org/10.1104/pp.19.00683

He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, et al. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol. 2022 [published online 18 Jul 2022]. https://doi.org/10.1080/07388551.2022.2053056

Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, et al. Understanding of hormonal regulation in rice seed germination. Life. 2022; 12(7):1021. https://doi.org/10.3390/life12071021

Scarano A, Chieppa M, Santino A. Looking at flavonoid biodiversity in horticultural crops: A colored mine with nutritional benefits. Plants. 2018; 7(4):98. https://doi.org/10.3390/plants7040098

Donkor ON, Stojanovska L, Ginn P, Ashton J, Vasiljevic T. Germinated grains – Sources of bioactive compounds. Food Chem. 2012; 135(3):950–959. http://dx.doi.org/10.1016/j.foodchem.2012.05.058

Zhu J, Chena C, Zhanga B, Huang Q. The inhibitory effects of flavonoids on a-amylase and a-glucosidase. Crit Rev Food Sci Nutr. 2020; 60(4):695–708. https://doi.org/10.1080/10408398.2018.1548428

Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of ?-glucosidase and ?-amylase by flavonoids. J Nutr Sci Vitaminol. 2006; 52(2):149–153. https://doi.org/10.3177/jnsv.52.149

Choudhary MI, Adhikari A, Rasheed S, Marasini BP, Hussain N, Kaleem WA, Rahman A-u. Cyclopeptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of ?-glucosidase enzyme and protein glycation. Phytochem Lett. 2011; 4(4):404–406. https://doi.org/10.1016/j.phytol.2011.08.006

Dong H-Q, Li M, Zhu F, Liu F-L, Huang J-B. Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against ?-glucosidase and ?-amylase linked to type 2 diabetes. Food Chem. 2012; 130(2):261–266. https://doi.org/10.1016/j.foodchem.2011.07.030

Sun L, Miao M, Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit Rev Food Sci Nutr. 2020; 60(4):541-555. https://doi.org/10.1080/10408398.2018.1544883

Published

19-03-2023

Versions

How to Cite

1.
Almaraz-Abarca N, Ayala-Chaidez AI, Wallander-Compeán L, Ávila-Reyes JA, Delgado-Alvarado EA, Naranjo-Jiménez N, Rosas-Medina I, Colmenero-Robles A. Variation of the phenolic composition and a-glucosidase inhibition potential of seeds, soaked seeds, and sprouts of four wild forms and four varieties of common bean (Phaseolus vulgaris). Plant Sci. Today [Internet]. 2023 Mar. 19 [cited 2024 Nov. 8];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2250

Issue

Section

Research Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.