Antioxidant response of Stevia rebaudiana (Bertoni) Bertoni (Angiosperms; Asteraceae) during developing phase of suspension cell culture

Authors

  • Shailja Dwivedi Department of Bioscience and Biotechnology, Banasthali Vidyapith (Rajasthan)
  • Afroz Alam Banasthali University http://orcid.org/0000-0001-8575-4677
  • Gyan Singh Shekhawat Department of Botany, Jain Narain Vyas University, Jodhpur (Rajasthan)

DOI:

https://doi.org/10.14719/pst.2016.3.2.227

Keywords:

Antioxidants, Single cell suspension culture, stevioside, Stevia rebaudiana

Abstract

The present study established a protocol for suspension cell culture of Stevia rebaudiana and demonstrates the antioxidant enzymes activity during various developing phase of it. Higher concentration of Auxin and Cytokines (3.0 mg L-1 BAP and 4.0 mg L-1 NAA) with Ascorbic acid (1 mg L-1) considered as highly suitable growth regulator combination for growth and development of Stevia rebaudiana suspension culture. Maximum concentration of stevioside (~70 mg G-1 of dry weight of tissue) was obtained on 14th day (exponential phase) which got reduced on 28th day (apoptotic phase) upto ~21 mg G-1 of dry weight of tissue. The amount of MDA reduced initially upto stationary growth phase which showed the adaptation of suspension cells in the culture medium and culture environment. Reduction of Chlorophyll showed the enhancing phenolic content with progressive culture period, while enhanced amount of proline was indicating the generation of defense mechanism with depletion of nutrient (with increased culture duration). The amount of SOD got enhanced with elevating the concentration of H2O2 as well. The concentration of CAT enhanced upto stationary growth phase of suspension cell while APX concentration showed continuous inhibition up to apoptotic phase from exponential phase.

Downloads

Download data is not yet available.

Author Biography

Afroz Alam, Banasthali University

Department of Bioscience and Biotechnology
Banasthali University, Rajasthan

References

Aebi H. 1974. Catalases In: Bergmeyer, HU (ed) Methods of enzymatic analysis, Verlag Chemie, Weinheim. Academic Press Inc, New York. 680.

Alexieva, V., I. Sergiev, S. Mapelli and E. Karanov, 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environt 24(12), pp.1337-1344. doi.org/10.1046/j.1365-3040.2001.00778.x.

Ali, M.B., K.W. Yu, E.J. Hahn, and K.Y. Paek, 2006. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant cell rep 25(6): 613-620. doi 10.1007/s00299-005-0065-6.

Allen, R D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107 (4): 1049. PMCID: PMC157235.

Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1), p.1. doi.org/10.1104/pp.24.1.1.

Barbehenn R., C. Dukatz, C. Holt, A. Reese, O. Martiskainen and J.P. Salminen. 2010. Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increase plant resistance. Oecologia 164: 993-1004. doi.org/10.1007/s00442-010-1733-y

Bates L.S., R.P. Waldren and I.D. Tears. 1973. Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. Plant Soil 39:205-207.

Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1): 276-287. doi.org/10.1016/0003-2697(71)90370-8

Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30(7), pp.987-998.

Croteau, Rodney, K. M. Toni and G. L. Norman. 2000. Natural products (secondary metabolites). Biochem Molecular Biol Plants 24: 1250-1319.

Davies, K. M., and C. D. Simon. 2014. Prospects for the use of plant cell cultures in food biotechnology. Currt Opin Biotech 26: 133-140. doi:10.1016/j.copbio.2013.12.010.

De Vos, C.R., H. Schat, R. Vooijs and W. H. Ernst. 1989. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J Plant Physiol 135(2), pp.164-169. doi.org/10.1016/S0176-1617(89)80171-3

Dewick, P. M. 2002. Medicinal natural products: a biosynthetic approach. John Wiley & Sons.

Foyer C.H., H. Lopez-Delgado, J.F. Dat and I.M. Scott. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling. Physiol Plantarum 100: 241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x

Geuns, J. M. C. 2003. Molecules of interest: stevioside. Phytochemistry 64:913–921

Gomes-Junior, R.A., C.A. Moldes, F.S. Delite, G.B. Pompeu, P.L. Gratão, P. Mazzafera, P.J. Lea and R.A. Azevedo. 2006. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65(8), pp.1330-1337. doi:10.1016/j.chemosphere.2006.04.056.

Hamilton E.W. and S.A. Heckathorn. 2001. Mitochondrial adapta­tions to NaCI complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126: 1266–1274. doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​126.​3.​1266

Holmström K.O., S. Somersalo, A. Mandal, T.E. Palva and B. Welin. 2000. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51: 177–185. doi: 10.1093/jexbot/51.343.177

Hong C.Y., Y.Y. Chao, M.Y. Yang, S.Y. Cheng, S.C. Cho and C.H. Kao. 2009. NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320:103–115. doi. 10.1007/s11104-008-9874-z

Janarthanam B., M. Gopalakrishnan and T. Sekar. 2010. Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh Journal of Scientific and Industrial Research. 45: 243-248. doi.org/10.3329/bjsir.v45i3.6532.

Kawano T. 2003. Roles of reactive oxygen species generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829-37. doi. 10.1007/s00299-003-0591-z

Kishor P.B.K., S. Sangam, R.N. Amruth, P. Sri Laxmi, K.R. Naidu, S.S. Rao, K.J. Reddy, P. Theriappan and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88: 424-435.

Maffei M.E., A. Mithofer and W. Boland. 2007. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946-59 dx.doi.org/10.1016/j.phytochem.2007.07.016

Makela P., J. Kaärkkaäinen and S. Somersalo. 2000. Effect of glycin­betaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plantarum 43: 471–475.

Mathur, S. and Shekhawat, G.S., 2013. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35(3), pp.931-939. doi. 10.1007/s11738-012-1136-2.

Meyer, H.J. and Van Staden, J., 1995. The in vitro production of an anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tiss Org 40(1), pp.55-58. doi.org/10.1007/BF00041119.

Morita S., H. Kaminaka, T. Masumura and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress involvement of hydrogen peroxide in oxidative stress; the involvement of hydrogen peroxide by oxidative stress signaling. Plant Cell Physiol. 40: 417–422 doi.org/10.1093/oxfordjournals.pcp.a029557

Nabeta, K., K. Teruyo, and S. Hiroshi. 1976. Phytosterol from the callus of Stevia rebaudiana Bertoni. Agr Biol Chem Tokyo 40(10): 2103-2104. doi.org/10.1080/00021369.1976.10862360.

Noreen Z. and M. Ashraf. 2009. Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ Exp Bot 67:395-402 doi:10.1016/j.envexpbot.2009.05.011

Patil, R.S., M.R. Davey, J.B. Power and E. C. Cocking. 2003. Development of long-term cell suspension cultures of wild tomato species, Lycopersicon chilense Dun. as regular source of protoplast: An efficient protoplast-to-plant system. IJBT 2:.504-511.

Prasad T. K., M.D. Anderson, B.A. Martin and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65-74. dx.​doi.​org/​10.​1105/​tpc.​6.​1.​65

Rao M.V., G. Paliyath, D.P. Ormrod, D.P. Murr and C.B. Watkins. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid mediated oxidative damage requires H2O2. Plant Physiol 115:137-149. doi.org/10.1104/pp.115.1.137

Sakamoto, K., K. Iida, K. Sawamura, K. Hajiro, Y. Asada, T. Yoshikawa and T. Furuya, 1993. Effects of nutrients on anthocyanin production in cultured cells of Aralia cordata. Phytochemistry 33(2): 357-360. doi.org/10.1016/0031-9422(93)85517-U.

Sikdar, S.U., N. Zobayer, F. Azim, M. Ashrafuzzaman and S. H. Prodhan. 2012. An efficient callus initiation and direct regeneration of Stevia rebaudiana. Afr J Biotechnol 11(45), p.10381.

Slaymaker D.H., D.A. Navarre, D. Clark, O. Pozo, G.B. Martin and D.F. Klessig. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonicanhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640-11645.

Sreedhar, R. V., L. Venkatachalam, R. Thimmaraju, N. Bhagyalakshmi, M. S. sNarayan, and G. A. Ravishankar. 2008. Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biol Plantarum 52(2): 355-360. doi.10.1007/s10535-008-0073-9.

Striedner J., E., Gutjahr, E. Czygan, G. Braunegg. 1991. Contributions the biotechnological production of sweeteners from Stevia rebaudiana Bertoni II. Induction of stevioside accumulation in cell cultures by variation in the nutrient medium and analysis of small amount of stevioside. Acta Biotechnol 11:501–504 doi.org/10.1002/abio.370110517.

Suzuki, H., T. Ikeda, T. Matsumoto and M. Noguchi. 1976. Isolation and identification of rutin from cultured cells of Stevia rebaudiana Bertoni. Agr Biol Chem Tokyo 40(4): 819-820. doi.org/10.1271/bbb1961.40.819.

Talha M., I. Hussain, R. Ullah and L. Khan. 2012. Analysis of stevioside in Stevia rebaudiana. J Med Plants Res 6: 2216-2219. doi. 10.5897/JMPR11.1792.

Tenhaken R. and C. Rubel. 1997. Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol 115: 291-298 doi.​org/​10.​1104/​pp.​115.​1.​291

Thiyagarajan, M., and P. Venkatachalam. 2012. Large scale in vitro propagation of Stevia rebaudiana (bert) for commercial application: Pharmaceutically important and antidiabetic medicinal herb. Ind Crop Prod 37 (1): 111-117. doi:10.1016/j.indcrop.2011.10.037

Uddin M.S., M.S.H. Chowdhury, M.M.H. Khan, M.B. Uddin, R. Ahmed and M.A. Baten. 2006. In vitro propagation of Stevia rebaudiana Bert in Bangladesh. Afr J Biotechnol 5: 1238-1240.

Verma, B. and U. Kant. 1999. Propagation of Emblica officinalis Gaertn through tissue culture. Advances in Plant Sciences 12, pp.21-26.

Verma, D.C., J. Tavares and F.A. Loewus. 1976. Effect of benzyladenine, 2, 4-dichlorophenoxyacetic acid, and D-glucose on myo-inositol metabolism in Acer pseudoplatanus L. cells grown in suspension culture. Plant Physiol 57(2): 241-244. doi.org/10.1104/pp.57.2.241.

Wang, W.B., Y.H. Kim, H.S. Lee, K.Y. Kim, X.P. Deng and S.S. Kwak. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Bioch 47: 570-577. doi.org/10.1016/j.plaphy.2009.02.009

Yang Y., C. Han, Q. Liu, B. Lin and J.W. Wang. 2008. Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30: 433-440. doi.org/10.1007/s11738-008-0140-z

Yuan Y. J., C. Li, Z. D. Hu, and J. C. Wu. 2001. Signal transduction pathway for oxidative burst and taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusation rium oxysporum. Enzyme Microb Tech 29:372-379. doi:10.1016/S0141-0229(01)00406-9

Yuan Y. J., C. Li, Z. D. Hu, and J. C. Wu. 2002. A double oxidative burst for taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysporum. Enzyme Microb Tech 30:774-778. doi:10.1016/S0141-0229(02)00057-1

Downloads

Published

06-04-2016

How to Cite

1.
Dwivedi S, Alam A, Shekhawat GS. Antioxidant response of Stevia rebaudiana (Bertoni) Bertoni (Angiosperms; Asteraceae) during developing phase of suspension cell culture. Plant Sci. Today [Internet]. 2016 Apr. 6 [cited 2024 Nov. 21];3(2):115-23. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/227

Issue

Section

Research Articles