Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical screening and Gas chromatography-mass spectrometry analysis on Ischaemumpilosum (Kleinex Willd.)

DOI
https://doi.org/10.14719/pst.2349
Submitted
9 January 2023
Published
11-09-2023
Versions

Abstract

Ischaemumpilosum (Kleinex Willd.) a weed among the grass is reported for ethno-medicinal practices for treatment of various treatments for human and domestic animals. The current work deals with phytochemical analysis in different parts of plants to find out bioactive compounds. The first-time reported results onI. pilosumreveal the significant phytochemicals by using preliminary phytochemical analysis, UV Visible spectral technique, FTIR analysis and GC-MS analysis. The preliminary phytochemical test confirms the presence of alkaloids, anthraquinone, cardiac glycosides, coumarins, flavonoids, glycosides, phenols, reducing sugars, saponins, steroids, tannin and triterpenes in Ischaemumpilosum.UV Visible spectra and FTIR gives the ranges of absorptions and functional group like Carboxylic acids (O-H) at 2956,92 cm-1, Alkanes (O-H) at 2849,89 cm-1, Aldehydes (C=O) at 1735,92 cm-1, Aromatic Rings (C=C) at 1462,95 cm-1, Alkanes (C-H) at 1377,97 cm-1, Esters (C-O) 1166,95 cm-1and Phenyl Ring (C-H) 758,97 cm-1. The GC-MS analysis related twenty-one compounds like Phenol, 4-bis (1,1-dimethylethyl), Pentanoic acid, 5-hydroxy, 2,4-di-t-butylphenyl esters, E-15-Heptadecenal, 1-Hexadecanol, n-Hexadecanoic acid, l (+)-Ascorbic acid 2,6-dihexadecanoate, Palmitic anhydride, Cycloeicosane, Cis-13-Octadecenoic acid and Triacontane from Ischaemumpilosumleaves extract.

References

  1. Garro, L.C., Intracultural variation in folk medical knowledge: A comparison between curers and noncurers. American Anthropologist. 1986;88(2):351–370. http://doi.wiley.com/10.1525/aa.1986.88.2.02a00040
  2. Patil, M.B., Khan, P.A., Ethnobotanical, phytochemical and Fourier Transform Infrared Spectrophotometer (FTIR) studies of Catunaregam spinosa (Thunb.) Tirven. Journal of Chemical and Pharmaceutical Sciences. 2017;10(2)950–955. https://doi.org/10.5281/zenodo.7562415
  3. Patil, M.B., Khan, P.A., Economical and ethical aspects in medicinal plant research. Research Review International Journal of Multidisciplinary. 2017;02(02):25–31.
  4. Ani, NI, Okolo, K.O., Offiah, R.O., Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. and Diels). Futur J. Pharm Sci. 2023;9(1):3. https://doi.org/10.1186/s43094-022-00455-z
  5. Dogara, A.M., A systematic review on the biological evaluation of Calotropis procera (Aiton) Dryand. Futur. J. Pharm Sci. 2023;9(1):16. https://doi.org/10.1186/s43094-023-00467-3
  6. Zhang, S., Zhang, L., Zou, H., Qiu, L., Zheng, Y., Yang, D.,Effects of light on secondary metabolite biosynthesis in medicinal plants. Front Plant Sci. 2021;12:781236. https://doi.org/10.3389/fpls.2021.781236
  7. Agidew, M.G., Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull Natl. Res. Cent. 2022; 46(1):87.https://doi.org/10.1186/s42269-022-00770-8
  8. Eisenhauer, N., Klier, M., Partsch, S., Sabais, A.C.W., Scherber, C., Weisser, W.W., No interactive effects of pesticides and plant diversity on soil microbial biomass and respiration. Applied Soil Ecology. 2009;42(1):31–36.https://doi.org/10.1016/j.apsoil.2009.01.005
  9. Harneti, D., Supratman, U., Phytochemistry and biological activities of Aglaia species. Phytochemistry. 2021;181:112540. https://doi.org/10.1016/j.phytochem.2020.112540
  10. Olivia, N.U., Goodness, U.C., Obinna, O.M., Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Futur. J. Pharm Sci. 2021;7(1):59. https://doi.org/10.1186/s43094-021-00208-4
  11. Khairnar, A.S., Gomase, P.V., Khan, T.A., Khan, P.A., Patil, M.B.,Begonia picta Sm.: A new record to Nandurbar and Dhule district flora of Maharashtra (India). Bionature. 2018; 38 333-336. https://doi.org/10.5281/zenodo.7562528
  12. Khalaf N.A, Shakya A.K, Al-Othman A, El-Agbar Z, Farah H.,Antioxidant activity of some common plants. Turkish Journal of Biology. 2008; 32:18 51-55. Available at: https://journals.tubitak.gov.tr/biology/vol32/iss1/8
  13. Prodhan, A.H.M.S.U, Mridu, F.S.,Baccaurea motleyana (Rambai): nutritional, phytochemical, and medicinal overview. Adv. Tradit. Med. (ADTM). 2023;23(1):11–35. https://doi.org/10.1007/s13596-021-00555-w
  14. Chanda, S., Nair, R., Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J. Pharmacol. 2006;38(2):142. https://doi.org/10.4103/0253-7613.24625
  15. Ezeanyikaa, L.U., Anosikea, C.A., A.C.N.O, Chibuogwu, C.C., Phytochemistry, micronutrient composition, and antioxidant potentials of Citrus maxima (Shaddock) fruit juice. J. Pharmacogn Phytochem. 2022;11(5):20–3. https://doi.org/10.22271/phyto.2022.v11.i5a.14498
  16. Momin, M.A.M., Bellah, S.F., Rahman, S.M.R., Rahman, A.A., Murshid, G.M.M., Emran, T.B., Phytopharmacological evaluation of ethanol extract of Sida cordifolia L. roots. Asian Pacific Journal of Tropical Biomedicine. 2014;4(1):18–24. https://doi.org/10.1016/S2221-1691(14)60202-1
  17. Sharma, R. M., Check list of indian grass gall midges (diptera: cecidoymyiidae ) with their host grass (poaceae) index. Zoo’s print journal. 2000;15(7):297–299. https://doi.org/10.11609/JoTT.ZPJ.15.7.297-9
  18. Sudip Ray, Jeetendra Sainkhediya. Threatened weeds of Bt cotton field inNimar region of Madhya Pradesh. Asian Journal of Bio Science. 2014;9(1):84–87.
  19. Rothe, S.P., Sapkal, S.S., Maheshwari, A.A., Traditional ethnomedicinal investigation from Pohradevi forest of Washim district. IJARIIE. 2017;3(2) 4953–4956.
  20. Than, S.S., Optimization of acid hydrolysis of grasses using response surface methodology for the preparation of bioethanol. Chemical Engineering Transactions. 2017;56:1615–1620. https://doi.org/10.3303/CET1756270
  21. Patil, M.B., Khan, P.A., Review: techniques towards the plant phytochemical study. International Journal of Science Info. 2016;1(3):157–172. https://doi.org/10.5281/zenodo.7559052
  22. Üzer, A., Erça?, E., Apak, R., Selective spectrophotometric determination of TNT in soil and water with dicyclohexylamine extraction. Analytica Chimica Acta. 2005;534(2):307–317. https://doi.org/10.1016/j.aca.2004.11.045
  23. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N., Willmitzer, L., Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18(11):1157–1161. https://doi.org/10.1038/81137
  24. Górna?, P., Baškirovs G., Siger, A., Free and esterified tocopherols, tocotrienols and other extractable and non-extractable tocochromanol-related molecules: compendium of knowledge, future perspectives and recommendations for chromatographic techniques, tools, and approaches used for tocochromanol determination. Molecules. 2022;27(19):6560. https://doi.org/10.3390/molecules27196560
  25. Habib, H., Finno, C.J., Gennity, I., Favro, G., Hales, E., Puschner, B., Simultaneous quantification of vitamin E and vitamin E metabolites in equine plasma and serum using LC-MS/MS. J VET Diagn Invest. 2021;33(3):506–15. https://doi.org/10.1177/10406387211005433
  26. Liebler, D.C., Burr, J.A., Philips, L., Ham, A.J.L., Gas chromatography–mass spectrometry analysis of vitamin e and its oxidation products. Analytical Biochemistry. 1996;236(1):27–34. https://doi.org/10.1006/abio.1996.0127
  27. Mottier, P., Gremaud, E., Guy, P.A., Turesky, R.J., Comparison of Gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry methods to quantify ?-tocopherol and ?-tocopherolquinone levels in human plasma. Analytical Biochemistry. 2002;301(1):128–135. https://doi.org/10.1006/abio.2001.5486
  28. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., Lightfoot, D., Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6(4):42. https://doi.org/10.3390/plants6040042
  29. Aysal, P., Ambrus, Á., Lehotay, S.J,, Cannavan, A., Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. Journal of Environmental Science and Health. 2007;42(5):481–490. https://doi.org/10.1080/19312450701392490
  30. Guemari, F., Laouini, S.E., Rebiai, A., Bouafia, A., Meneceur, S., Tliba, A., UV-visible spectroscopic technique-data mining tool as a reliable, fast, and cost-effective method for the prediction of total polyphenol contents: validation in a bunch of medicinal plant extracts. Applied Sciences. 2022;12(19):9430. https://doi.org/10.3390/app12199430
  31. Ibrahim, M., Aal, M.A.E., Spectroscopic study of the interaction of heavy metals with organic acids. IJEP. 2008;35(1):99. https://doi.org/10.1504/IJEP.2008.021134
  32. Cooke, Theodore., The Flora of the Presidency of Bombay. London: Taylor and Francis; 1908.
  33. Patil, D. A. Flora of Dhule and Nandurbar District. M/S Bishen Singh Mahendra Pal Singh; 2003.
  34. The Flora of the Presidency of Bombay. Nature. 1904;71(1832):124–124. https://doi.org/10.1038/071124b0
  35. AOAC (Official methods of analysis of the Association of Official Analytical Chemists). Washington, DC. 1990;2(15).
  36. Hussain, J., Ullah, R., Khan, U., Hussain, S.T., Anwar, S., Endogenous transitional metal and proximate analysis of selected medicinal plants from Pakistan. Journal of Medicinal Plants Research. 2010;4(3):267–270.
  37. Naqbi, K.M.A.A., Karthishwaran, K., Kurup, S.S., Abdul, Muhsen, Alyafei, M., Jaleel, A. Phytochemicals, proximate composition, mineral analysis and in vitro antioxidant activity of Calligonum crinitum boiss. Horticulturae. 2022;8(2):156. https://www.mdpi.com/2311-7524/8/2/156
  38. Shukla, A., Vats, S., Shukla, R. Phytochemical screening, proximate analysis and antioxidant activity of Dracaena reflexaLam. leaves. Indian J Pharm Sci. 2015;77(5):640. https://doi.org/10.4103/0250-474X.169035
  39. Ayoola, G., Coker, H., Adesegun, S., Adepoju-Bello, A., Obaweya, K., Ezennia, E., Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Pharm Res. 2008;7(3):1019–1024. https://doi.org/10.4314/tjpr.v7i3.14686
  40. Mohammed, J., Oba, O.A., Pasaoglulari?, Aydi?Nli?K, N., Preliminary phytochemical screening, GC-MS, FTIR Analysis of ethanolic extracts of Rosmarinus officinalis, Coriandrum sativum L and Mentha spicata. Hacettepe J. Biol. and Chem., 2023, 51 (1), 93-102. https://doi.org/10.15671/hjbc.1073300
  41. Moonmun,D. Majumder, R.,and Lopamudra, A., Quantitative phytochemical estimation and evaluation of antioxidant and antibacterial activity of methanol and ethanol extracts of Heliconia rostrata. Indian Journal of Pharmaceutical Sciences. 2017, 79(1): 79–90. https://doi.org/10.4172/pharmaceutical-sciences.1000204
  42. Sandosh, T.A. Peter, M.P.J., Raj J.Y., Phytochemical analysis of Stylosanthes fruticosa using UV-VIS, FTIR and GC-MS. Research Journal of Chemical Sciences. 2013;3(11):14–23.
  43. Umekar, M.J., Lohiya, R.T., Gupta, K.R., Kotagale, N.R., Raut, N.S., Studies on meropenem and cefixime metal ion complexes for antibacterial activity. Future Journal of Pharmaceutical Sciences. 2021;7(1):233. https://doi.org/10.1186/s43094-021-00379-0
  44. Durães, N., Bobos, I., Ferreira, da Silva, E., Chemistry and FT-IR spectroscopic studies of plants from contaminated mining sites in the Iberian Pyrite Belt, Portugal. Mineral Mag. 2008;72(1):405–409. https://doi.org/10.1180/minmag.2008.072.1.405
  45. Martin, J.A., Solla, A., Woodward, S., Gil, L., Fourier transform-infrared spectroscopy as a new method for evaluating host resistance in the Dutch elm disease complex. Tree Physiology. 2005 ;25(10):1331–1338. https://doi.org/10.1093/treephys/25.10.1331
  46. Vejendla, A., Talari, S., Moturu, R., Boddapati, S.N.M., Kola, A.E., Method development and validation for Cabotegravir and Rilpivirine by using HPLC and its degradants are characterized by LCMS and FTIR. Futur J Pharm Sci. 2021;7(1):226. https://doi.org/10.1186/s43094-021-00355-8
  47. Yang, J., Yen, H.E., Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy study. Plant Physiology. 2002;130(2):1032–1042. https://doi.org/10.1104/pp.004325
  48. Wu, D., Zhou, Y., Cai, P., Shen, S., Pan, Y., Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids. Journal of Chromatography A. 2015;1395:65–72. https://doi.org/10.1016/j.chroma.2015.03.047
  49. Chirumamilla, P., Dharavath, S.B., Taduri, S., GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts. Bull Natl Res Cent. 2022;46(1):127. https://doi.org/10.1186/s42269-022-00818-9
  50. Kalaichelvi, K., Dhivya, S. M., GC-MS analysis of ethanolic extract of Micrococca mercurialis (L.) Benth. (euphorbiaceae). WJPPS. 2017;6(9):1684–1696. https://doi.org/10.20959/wjpps20179-10118
  51. Krishnaiah, D., Sarbatly, R., Bono, A., Phytochemical antioxidants for health and medicine -A move towards nature. Biotechnology and Molecular Biology Review. 2007;1(4):097–104.
  52. Mohan, S.C., Dinakar, S., Anand, T., Elayaraja, R., Sathiya, Priya, B., Phytochemical, GC-MS analysis and antibacterial activity of a medicinal plant Acalypha indica. Int. J. Pharm. Tech. Res. 2012;4(3):1050–1054.
  53. Cao, H., Chai, T.T., Wang, X., Morais-Braga, M.F.B., Yang, J.H. Wong, F.C., Phytochemicals from fern species: potential for medicine applications. Phytochem Rev. 2017;16(3):379–440. https://doi.org/10.1007/s11101-016-9488-7
  54. Saeed, N., Khan, M.R., Shabbir, M., Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12(1):221.https://doi.org/10.1186/1472-6882-12-221
  55. Sreeja, P.S., Arunachalam, K., Saikumar, S., Kasipandi, M., Dhivya, S., Murugan, R., Gastroprotective effect and mode of action of methanol extract of Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir (Lamiaceae) leaves on experimental gastric ulcer models. Biomedicine and Pharmacotherapy. 2018;97:1109–1118. https://doi.org/10.1016/j.biopha.2017.11.030
  56. Alves-Silva, M., J., Zuzarte, M., Marques, C., Salgueiro, L., Girao, H., Protective effects of terpenes on the cardiovascular system: current advances and future perspectives. CMC. 2016;23(40):4559–600. https://doi.org/10.2174/0929867323666160907123559
  57. Hill, J.A., Suker, J.R., Sachs, K., Brigham, C., The athletic polydrug abuse phenomenon: A case report. Am. J. Sports Med. 1983;11(4):269–271. https://doi.org/10.1177/036354658301100417
  58. Phillipson, J.D., Phytochemistry and pharmacognosy. Phytochemistry. 2007;68(22–24):2960–2972. https://doi.org/10.1016/j.phytochem.2007.06.028
  59. Rizwan, K., Majeed, I., Bilal, M., Rasheed, T., Shakeel, A., Iqbal, S., Phytochemistry and diverse pharmacology of genus Mimosa: A review. Biomolecules. 2022;12(1):83. https://doi.org/10.3390/biom12010083
  60. Galdes, A., Hill, H.A., Baldwin, G.S., Waley, S.G., Abraham, E.P., The 1H nuclear-magnetic-resonance spectroscopy of cobalt(II)-?-lactamase II. Biochemical Journal. 1980;187(3):789–795. https://doi.org/10.1042/bj1870789
  61. Ajayi, G.O., Olagunju, J.A., Ademuyiwa, O., Martins, O.C., Gas chromatography-mass spectrometry analysis and phytochemical screening of ethanolic root extract of Plumbago zeylanica, Linn. J. Med. Plant. Res. 2011;5(9):1756–1761.
  62. Belakhdar, G., Benjouad, A., Abdennebi, E.H., Determination of some bioactive chemical constituents from Thesium humile Vahl.J. Mater. Environ. Sci. 2015; 6 (10): 2778–2783.
  63. Valentina Ramirez, Sandra Sulay Arango, Maria Elena Maldonado, Diego Uribe, Johanny Aguillon, Jenny Paola Quintero., Biological activity of Passiflora edulis f. Flavicarpa ethanolic leaves extract on human colonic adenocarcinoma cells. J. App. Pharm. Sci. 2019;9(2):64–71. https://doi.org/10.1186/s43094-021-00355-8
  64. Sabeeh, S.A., Bioactive compounds of streptomyces QUS7 isolate ethyl acetate extract from sediment in aldiwanyia river. World Bulletin of Public Health. 2022;12: 29–34.
  65. Goda, M.S., Eltamany, E.E., Habib, E.S., Hassanean, H.A., Ahmed, S.A., Abdelhameed, F.A. Gas chromatography-mass spectrometry analysis of marine seagrassThalassodendron ciliatumcollected from Red Sea. Records of Pharmaceutical and Biomedical Sciences. 2020;4(2):1–15.https://doi.org/10.21608/rpbs.2020.27958.1058
  66. Khaled, J.M., Alharbi, N.S., Mothana, R.A., Kadaikunnan, S., Alobaidi, A.S., Biochemical profile by GC–MS of fungal biomass produced from the ascospores of Tirmania nivea as a natural renewable resource. J. Fungi. 2021;7(12):1083. https://doi.org/10.3390/jof7121083
  67. Jiao, J., Ma, D.H., Gai, Q.Y., Wang, W., Luo, M., Fu, Y.J., Rapid analysis of Fructus forsythiae essential oil by ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction followed by gas chromatography–mass spectrometry. Analytica Chimica Acta. 2013;804:143–150. https://doi.org/10.1016/j.aca.2013.10.035
  68. Jim Duke., Dr. Duke’s phytochemical and ethnobotanical databases. 1994. https://phytochem.nal.usda.gov/phytochem/search
  69. Yusuf, A.Z., Zakir, A., Shemau, Z., Abdullahi, M., Halima, S.A., Phytochemical analysis of the methanol leaves extract of Paullinia pinnataLinn. J. Pharmacognosy Phytother. 2014;6(2):10–6. https://doi.org/10.5897/JPP2013.0299
  70. Geoffrey, K.K., John, K.M., Naomi, M., Simon, K.M., Qualitative phytochemical screening of Camellia sinensis and Psidium guajavaleave extracts from kericho and Baringo Counties. IJBR. 2014;5(3):506–512.
  71. Dharmendra Singh, Poonam Singh, Abhishek Gupta, Shikha Solanki, Ekta Sharma, Raeev Nema., Qualitative estimation of the presence of bioactive compound in Centella asiatica: An important medicinal plant. International Journal of Life Science and Medical Science. 2012;2(1). https://doi.org/10.5963/LSMR0201002

Downloads

Download data is not yet available.