Molecular diversity in maize inbred lines for turcicum leaf blight resistance using simple sequence repeats (SSRs)

Authors

DOI:

https://doi.org/10.14719/pst.2368

Keywords:

Dendrogram, Jaccard’s similarity coefficient, Maize, SSRs, TLB

Abstract

Maize (Zea mays L.), third most important cereal crop in the world, whose productivity can be limited partly by an important foliar turcicum disease caused by Exserohilum turcicum. In order to design efficient breeding programmes for resistance to leaf blight, the germplasm must be thoroughly characterized. This study evaluated the diversity of maize inbred lines using 26 simple sequence repeat (SSR) primers. The polymorphism information content (PIC) value of the SSR loci ranged from 0.61 to 0.71, with an overall mean of 0.65. It was highest for the primer bnlg1335 (0.71) and lowest for the primer bnlg1666 (0.61). The markers produced one to four alleles, with an average of 2.5 alleles per marker. Using the DARwin 6.0 programme, the inbred lines were grouped into different clusters. The cluster A was solitary, with the inbred line VL171488-2 having a resistant reaction against leaf blight. This line can be used in crossing programmes with divergent parents to develop leaf blight resistant hybrids. The results of this study can be used to design efficient breeding programmes for resistance to leaf blight.

Downloads

Download data is not yet available.

References

Kumar B, Choudhary M, Kumar P, Kumar K, Kumar S, Singh BK, Lahkar C, Kumar P, Dar ZA, Devlash R, Hooda KS. Population structure analysis and association mapping for turcicum leaf blight resistance in tropical maize using SSR markers. Genes. 2022;13(4):618. https://doi.org/10.3390/genes13040618

Shiferaw B, Prasanna BM, Hellin J, Banziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security. 2011;3(3):307-27. https://doi.org/10.1007/s12571-011-0140-5

Ministry of Agriculture, Government of India. Indiastat. 2020-21. https://www.indiastat.com.

Bindhu KG, Pandurangegowda KT, Lohithaswa HC, Madhuri R, Mallikarjuna N. Genetics of resistance to turcicum leaf blight caused by Exserohilum turcicum (Pass.) Leonard and Suggs in maize (Zea mays L.). International Journal of Current and Applied Microbiology. 2017;6(11): 964-69. http://doi.org/10.18782/2320-7051.6378

Robert AL. Some of the leaf blights of corn. Year Book of Agriculture. United States Department of Agriculture, North Carolina. 1953;380-85. https://naldc.nal.usda.gov/download/IND43894350/pdf

Fehr WR. Principles of Cultivar Development. Macmillan, co., New York, USA. 1987.

Van Inghelandt D, Melchinger AE, Lebreton C, Stich B. Population Structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics. 2010;120:1289-99. https://doi.org/10.1007/s00122-009-1256-2

Menkir A, Melake BA, Ingelbrecht CI, Adepoju A. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular marker. Theoretical Applied Genetics. 2004;108: 1582-90. https://doi.org/10.1007/s00122-004-1585-0

Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G, Balint-Kurti P, Nelson RJ. Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize-Setosphaeria turcica pathosystem. BMC Plant Biology. 2010;10(1):1-25. http://www.biomedcentral.com/1471-2229/10/103 https://doi.org/10.1186/1471-2229-10-103

Mitiku M, Eshte Y, Shiferaw W. Evaluation of maize variety for northern leaf blight (Trichometasphaeria turcica) in South Omo zone. World Journal of Agricultural Research. 2014;2 (5):237-39. https://doi.org/10.12691/wjar-2-5-6

Irfan M, Ting ZT, Yang W, Chunyu Z, Qing M, Lijun Z, Feng L. Modification of CTAB protocol for maize genomic DNA extraction. Research Journal of Biotechnology. 2013;8(1):41-45.

Vivekananda Y, Thangjam K. A simple modified DNA extraction method of maize. International Journal of Agricultural Science and Research. 2018;8(3):67-72. https://doi.org/10.24247/ijasrjun20186

http://www.maizegdb.org: maize genome database

Jaccard P. Nouvellesrechessurla distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles. 1908;44: 223-70. https://ci.nii.ac.jp/naid/10020758887/

Perrier X, Jacquemoud-Collet JP. 2006. DARwin software http://darwin.cirad.fr/ darwin.html. Accessed 10 June 2022

Anderson JA. Optimizing parental selection for genetic linkage maps. Genome. 1993;36:181-86. https://doi.org/10.1139/g93-024

Salami HA, Sika KC, Padonou W, Aly D, Yallou C, Adjanohoun A, Kotchoni S, Baba-Moussa L. Genetic diversity of maize accessions (Zea mays L.) cultivated from Benin using microsatellites markers. American Journal of Molecular Biology. 2016;6: 12-24. http://dx.doi.org/10.4236/ajmb.2016.61002

Wende A, Shimelis H, Gwata ET. Genetic variability for resistance to leaf blight and diversity among selected maize inbred lines. In: M. El-Esawi (ed.), Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement. 2018. IntechOpen, London. doi.org/10.5772/intechopen.70553

Adu GB, Awuku FJ, Amegbor IK, Haruna A, Manigben KA, Aboyadana PA. Genetic characterization and population structure of maize populations using SSR markers. Annals of Agricultural Sciences. 2019;64 (1):47-54. https://doi.org/10.1016/j.aoas.2019.05.006

Nikolic A, Ignjatovic MD, Kovacevic D, Camdzija Z, Filipovic M, Mladenovic, Drinic S. Genetic diversity of maize inbred lines as inferred from SSR markers. Genetika. 2015;47(2):489-98. https://doi.org/10.2298/GENSR1502489N

Mahar KS, Agrawal PK, Kalyana Babu B, Gupta HS. Assessment of genetic diversity among the elite maize (Zea mays L) genotypes adapted to North-Western Himalayan region of India using microsatellite markers. Journal of Plant Biochemistry and Biotechnology 2009;18(2):217-20. https://doi.org/10.1007/BF03263322

Zunjare R, Hossain F, Muthusamy V, Vishwakarma AK, Pandey N, Kumar P, Sekhar JC, Jha SK, Nepolean T, Gupta, HS. Analyses of genetic diversity among exotic-and indigenous-maize inbreds differing for responses to stored grain weevil (Sitophilus oryzae L.) infestation. Maydica. 2015;60:M28. https://doi.org/10.1080/23311932.2015.1137156

Nyaligwa L, Hussein S, Amelework B, Ghebrehiwot H. Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica. 2015;60:M29. oai:journals.crea.ugov.it:article/1278

Mukri G, Patil MS, Motagi, BN, Bhat JS, Singh C, Jeevan Kumar SP, Gadag RN, Gupta NC, Simal-Gandara J. Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Molecular Biology Reports. 2022;1-8. https://doi.org/10.1007/s11033-022-07295-3

Kiran KK. Development and evaluation of turcicum leaf blight resistant hybrids using newly developed inbred lines of maize (Zea mays L.). Agricultural Science, Ph.D (thesis). Dharwad, India: University of Agricultural Sciences; 2016.

Published

12-05-2023 — Updated on 01-07-2023

Versions

How to Cite

1.
keerthana D, Haritha T, Sudhir Kumar I, Ramesh D. Molecular diversity in maize inbred lines for turcicum leaf blight resistance using simple sequence repeats (SSRs). Plant Sci. Today [Internet]. 2023 Jul. 1 [cited 2024 Dec. 21];10(3):385-92. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2368

Issue

Section

Research Articles