Biogenesis of nanoparticles using microorganisms: A Review
DOI:
https://doi.org/10.14719/pst.2373Keywords:
Bionanoparticles, Bacteria, Algae, Biosynthesis, MicrobesAbstract
Bionanoparticles are synthesized using novel strategies through environmentally benign approaches. Emphasis is on synthesizing nanoparticles using green chemistry principles to reduce the burden of pollution on the environment. The biological approach for the synthesis of metallic nanoparticles is also described as green synthesis (bioprocess) of nanoparticles, is now being looked at as an alternative to physio-chemical approaches and generally uses biological components like plants and microbes (bacteria, fungi, algae and yeast) and cause minimal harm to the nature. The naturally occurring potential biodegradable agents like enzymes (secreted by microbes) act as reducing agents and play a very distinct role in the synthesis of nanoparticles. Most bioprocesses occur under normal air pressure and temperature, resulting in vast energy savings and reducing the use of expensive chemicals making the green approach less costly. This process of synthesis of nanoparticles using biological systems is referred to as nanobiotechnology. Nanobiotechnology has emerged as an integration between biotechnology and nanotechnology for developing biosynthetic and environmentally friendly technology for nanoparticle synthesis. This review is mainly focused on the microbial synthesis of nanoparticles utilizing the extract of bacteria and algae. In the present review, the bio-reduction capacity of various bacteria and algae is highlighted in detail, which has yet to be discussed earlier. This is a comprehensive work underlining the synthesis of nanoparticles, their bio-reduction ability, and application of nanoparticles.
Downloads
References
Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1(2):123-28. http://dx.doi.org/10.1016/j.coche.2011.12.002
Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng. 2017;5(5):4866-83. http://dx.doi.org/10.1016/j.jece.2017.09.026
Maroušek J, Maroušková A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohatá A et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14(2). https://doi.org/10.3390/polym14020266
Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):59-81. https://doi.org/10.1080/17518253.2020.1802517
Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83(1-4):132-40. https://doi.org/10.1016/j.hydromet.2006.03.019
Talabani RF, Hamad SM, Barzinjy AA, Demir U. Biosynthesis of silver nanoparticles and their applications in harvesting sunlight for solar thermal generation. Nanomaterials. 2021;11(9). https://doi.org/10.3390/nano11092421
Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. 2015;2015(September 2014):1-18. http://www.hindawi.com/journals/jnt/2015/829526/ https://doi.org/10.1155/2015/829526
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit Rev Microbiol. 2016;42(2):209-21. https://doi.org/10.3109/1040841X.2014.917069
Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces. 2013;103:283-87. http://dx.doi.org/10.1016/j.colsurfb.2012.10.030
Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-40. https://doi.org/10.1016/j.arabjc.2010.04.008
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50. https://doi.org/10.1039/c1gc15386b
Singhal A, Singhal N, Bhattacharya A, Gupta A. Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorg Nano-Met Chem. 2017;47(11). https://doi.org/10.1080/24701556.2017.1357604
Prusty A, Parida P. Development and evaluation of gel incorporated with biogenically synthesised silver nanoparticles. J Appl Biopharm. 2015;3(1):1-6. https://doi.org/10.14205/2309-4435.2015.03.01.1
Singhal A, Gupta A. Efficient utilization of Sal deoiled seed cake (DOC) as reducing agent in synthesis of silver nanoparticles: Application in treatment of dye containing wastewater and harnessing reusability potential for cost-effectiveness. J Mol Liq. 2018;268:691-99. https://linkinghub.elsevier.com/retrieve/pii/S0167732218318014 https://doi.org/10.1016/j.molliq.2018.07.092
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci. 2010;156(1-2):1-13. http://dx.doi.org/10.1016/j.cis.2010.02.001
Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat. 2011;2011. https://doi.org/10.1155/2011/270974
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S et al. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.636588
Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: Synthesis and biomedical applications. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.626834
Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere . 2021;264:128580. https://doi.org/10.1016/j.chemosphere.2020.128580
Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotech. 2009;84(2):151-57. https://doi.org/10.1002/jctb.2023
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotech Adv . 2013;31(2):346-56. http://dx.doi.org/10.1016/j.biotechadv.2013.01.003
Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S et al. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enz Microb Technol. 2016;95:85-93. http://dx.doi.org/10.1016/j.enzmictec.2016.08.018
Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta - Part A: Mol Biomol Spect. 2007;67(3-4):1003-06. https://doi.org/10.1016/j.saa.2006.09.028
Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011;7(5):2148-52. http://dx.doi.org/10.1016/j.actbio.2011.01.023
Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B Biointerfaces. 2009;74(1):191-95. https://doi.org/10.1016/j.colsurfb.2009.07.016
Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74(1):328-35. https://doi.org/10.1016/j.colsurfb.2009.07.048
Mann S, Frankel RB, Blakemore RP. Structure, morphology and crystal growth of bacterial magnetite. Nature. 1984;310(5976):405-07. https://doi.org/10.1038/310405a0
Hassan DF, Mahmood MB. Biosynthesis of iron oxide nanoparticles using Escherichia coli. Iraqi J Sci. 2019;60(3):453-59.
Khan R, Fulekar MH. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interf Sci. 2016;475:184-91. http://dx.doi.org/10.1016/j.jcis.2016.05.001
Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B Biol. 2019;190:103-09. https://doi.org/10.1016/j.jphotobiol.2018.11.017
Ganesan V, Hariram M, Vivekanandhan S, Muthuramkumar S. Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Mater Sci Semicond Process. 2020;105:104739. https://doi.org/10.1016/j.mssp.2019.104739
Rozamond Y Sweeney , Chuanbin Mao, Xiaoxia Gao, Justin L Burt, Angela M Belcher, George Georgiou BLI. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem & Biol. 2004;11:15553-59. 10.1016/j.chembiol.2004.08.022 https://doi.org/10.1016/j.chembiol.2004.08.022
Bai HJ, Zhang ZM, Gong J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett. 2006;28(14):1135-39. https://doi.org/10.1007/s10529-006-9063-1
Bai HJ, Zhang ZM. Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett. 2009;63(9-10):764-66. http://dx.doi.org/10.1016/j.matlet.2008.12.050
Maroušek J, Gavurová B, Strunecký O, Maroušková A, Sekar M, Marek V. Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel. 2023;344. https://doi.org/10.1016/j.fuel.2023.128056
Maroušek J, Maroušková A, Gavurová B, Tu?ek D, Strunecký O. Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour Technol. 2023;374. https://doi.org/10.1016/j.biortech.2023.128802
Annamalai J, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. ApplNanosci (Switzerland). 2015;5(5):603-07. https://doi.org/10.1007/s13204-014-0353-y
Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 2007;57(1):97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010
Merin DD, Prakash S, Bhimba BV. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med. 2010;3(10):797-99. http://dx.doi.org/10.1016/S1995-7645(10)60191-5
Salem DMSA, Ismail MM, Aly-Eldeen MA. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt J Aquat Res. 2019;45(3):197-204. https://doi.org/10.1016/j.ejar.2019.07.002
El-Kassas HY, Aly-Eldeen MA, Gharib SM. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanolog Sin. 2016;35(8):89-98. https://doi.org/10.1007/s13131-016-0880-3
Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci (Switzerland). 2014;4(5):571-76. https://doi.org/10.1007/s13204-013-0233-x
Mandal RP, Sekh S, Sarkar N Sen, Chattopadhyay D, De S. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation. Mater Rese Express. 2016;3(5):1-11. http://dx.doi.org/10.1088/2053-1591/3/5/055007
Ghosh S, Ahmad R, Banerjee K, AlAjmi MF, Rahman S. Mechanistic aspects of microbe-mediated nanoparticle synthesis. Front Microbiol. 2021;12:1-12. https://doi.org/10.3389/fmicb.2021.638068
Ayesha A. Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol. 2017;11(2):119.
Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod. 2020;272:122880. https://doi.org/10.1016/j.jclepro.2020.122880
Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes-A review. Colloids Surf B Biointerfaces. 2014;121:474-83. http://dx.doi.org/10.1016/j.colsurfb.2014.05.027
Grasso G, Zane D, Dragone R. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials. 2020;10(1). https://doi.org/10.3390/nano10010011
Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16(1). https://doi.org/10.1186/s12951-018-0334-5
Bartoš V, Vochozka M, Šanderová V. Copper and aluminium as economically imperfect substitutes, production and price development. Acta Montan Slovaca. 2022;27(2):462-78. https://doi.org/10.46544/AMS.v27i2.14
Vochozka M, Kalinová E, Gao P, Smolíková L. Development of copper price from july 1959 and predicted development till the end of year 2022. Acta Montan Slovaca. 2021;26(2):262-80. https://doi.org/10.46544/AMS.v26i2.07
Rowland Z, Bláhová A, Gao P. Silver as a value keeper and wealth distributor during an economic recession. Acta Montan Slovaca. 2021;26(4):796-809. https://doi.org/10.46544/AMS.v26i4.16
Nováková L, Novotná L, Procházková M. Predicted future development of imperfect complementary goods – Copper and zinc until 2030. Acta Montan Slovaca. 2022;27(1):135-51. https://doi.org/10.46544/AMS.v27i1.10
Pathakoti K, Manubolu M, Hwang HM. Nanotechnology applications for environmental industry . Handb. Nanomater Indust Appl. 2018;894-907. http://dx.doi.org/10.1016/B978-0-12-813351-4.00050-X
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol. 2018;16(1):1-24. https://doi.org/10.1186/s12951-018-0408-4
Maroušek J. Review: Nanoparticles can change (bio) hydrogen competitiveness. Fuel. 2022;328.
Maroušek J. Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio)diesel. Clean Technol Environ Pol. 2022;1059-67. https://doi.org/10.1016/j.fuel.2022.125318
Oliva-Arancibia B, Órdenes-Aenishanslins N, Bruna N, Ibarra PS, Zacconi FC, Pérez-Donoso JM et al. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440. J Biotechnol. 2017;264:29-37. http://dx.doi.org/10.1016/j.jbiotec.2017.10.013
Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol. 2015;27(5):1861-69. https://doi.org/10.1007/s10811-014-0492-2
Momeni S, Nabipour I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol. 2015;176(7):1937-49. https://doi.org/10.1007/s12010-015-1690-3
Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. JBiotechnol. 2007;128(3):648-53. https://doi.org/10.1016/j.jbiotec.2006.11.014
Downloads
Published
Versions
- 01-10-2023 (2)
- 14-08-2023 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Anjum Singhal, Pooja Baweja, Sandhya Gupta, Haritma Chopra, Pinkey Bajaj Gandhi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).