Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Biogenesis of nanoparticles using microorganisms: A Review

DOI
https://doi.org/10.14719/pst.2373
Submitted
19 January 2023
Published
14-08-2023
Versions

Abstract

Bionanoparticles are synthesized using novel strategies through environmentally benign approaches. Emphasis is on synthesizing nanoparticles using green chemistry principles to reduce the burden of pollution on the environment. The biological approach for the synthesis of metallic nanoparticles is also described as green synthesis (bioprocess) of nanoparticles, is now being looked at as an alternative to physio-chemical approaches and generally uses biological components like plants and microbes (bacteria, fungi, algae and yeast) and cause minimal harm to the nature. The naturally occurring potential biodegradable agents like enzymes (secreted by microbes) act as reducing agents and play a very distinct role in the synthesis of nanoparticles. Most bioprocesses occur under normal air pressure and temperature, resulting in vast energy savings and reducing the use of expensive chemicals making the green approach less costly. This process of synthesis of nanoparticles using biological systems is referred to as nanobiotechnology. Nanobiotechnology has emerged as an integration between biotechnology and nanotechnology for developing biosynthetic and environmentally friendly technology for nanoparticle synthesis. This review is mainly focused on the microbial synthesis of nanoparticles utilizing the extract of bacteria and algae. In the present review, the bio-reduction capacity of various bacteria and algae is highlighted in detail, which has yet to be discussed earlier. This is a comprehensive work underlining the synthesis of nanoparticles, their bio-reduction ability, and application of nanoparticles.

References

  1. Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1(2):123-28. http://dx.doi.org/10.1016/j.coche.2011.12.002
  2. Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng. 2017;5(5):4866-83. http://dx.doi.org/10.1016/j.jece.2017.09.026
  3. Maroušek J, Maroušková A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohatá A et al. Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers. 2022;14(2). https://doi.org/10.3390/polym14020266
  4. Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):59-81. https://doi.org/10.1080/17518253.2020.1802517
  5. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83(1-4):132-40. https://doi.org/10.1016/j.hydromet.2006.03.019
  6. Talabani RF, Hamad SM, Barzinjy AA, Demir U. Biosynthesis of silver nanoparticles and their applications in harvesting sunlight for solar thermal generation. Nanomaterials. 2021;11(9). https://doi.org/10.3390/nano11092421
  7. Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. 2015;2015(September 2014):1-18. http://www.hindawi.com/journals/jnt/2015/829526/ https://doi.org/10.1155/2015/829526
  8. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Crit Rev Microbiol. 2016;42(2):209-21. https://doi.org/10.3109/1040841X.2014.917069
  9. Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces. 2013;103:283-87. http://dx.doi.org/10.1016/j.colsurfb.2012.10.030
  10. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-40. https://doi.org/10.1016/j.arabjc.2010.04.008
  11. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50. https://doi.org/10.1039/c1gc15386b
  12. Singhal A, Singhal N, Bhattacharya A, Gupta A. Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorg Nano-Met Chem. 2017;47(11). https://doi.org/10.1080/24701556.2017.1357604
  13. Prusty A, Parida P. Development and evaluation of gel incorporated with biogenically synthesised silver nanoparticles. J Appl Biopharm. 2015;3(1):1-6. https://doi.org/10.14205/2309-4435.2015.03.01.1
  14. Singhal A, Gupta A. Efficient utilization of Sal deoiled seed cake (DOC) as reducing agent in synthesis of silver nanoparticles: Application in treatment of dye containing wastewater and harnessing reusability potential for cost-effectiveness. J Mol Liq. 2018;268:691-99. https://linkinghub.elsevier.com/retrieve/pii/S0167732218318014 https://doi.org/10.1016/j.molliq.2018.07.092
  15. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci. 2010;156(1-2):1-13. http://dx.doi.org/10.1016/j.cis.2010.02.001
  16. Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat. 2011;2011. https://doi.org/10.1155/2011/270974
  17. Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S et al. Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.636588
  18. Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: Synthesis and biomedical applications. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.626834
  19. Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere . 2021;264:128580. https://doi.org/10.1016/j.chemosphere.2020.128580
  20. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotech. 2009;84(2):151-57. https://doi.org/10.1002/jctb.2023
  21. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotech Adv . 2013;31(2):346-56. http://dx.doi.org/10.1016/j.biotechadv.2013.01.003
  22. Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S et al. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enz Microb Technol. 2016;95:85-93. http://dx.doi.org/10.1016/j.enzmictec.2016.08.018
  23. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta - Part A: Mol Biomol Spect. 2007;67(3-4):1003-06. https://doi.org/10.1016/j.saa.2006.09.028
  24. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011;7(5):2148-52. http://dx.doi.org/10.1016/j.actbio.2011.01.023
  25. Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B Biointerfaces. 2009;74(1):191-95. https://doi.org/10.1016/j.colsurfb.2009.07.016
  26. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74(1):328-35. https://doi.org/10.1016/j.colsurfb.2009.07.048
  27. Mann S, Frankel RB, Blakemore RP. Structure, morphology and crystal growth of bacterial magnetite. Nature. 1984;310(5976):405-07. https://doi.org/10.1038/310405a0
  28. Hassan DF, Mahmood MB. Biosynthesis of iron oxide nanoparticles using Escherichia coli. Iraqi J Sci. 2019;60(3):453-59.
  29. Khan R, Fulekar MH. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interf Sci. 2016;475:184-91. http://dx.doi.org/10.1016/j.jcis.2016.05.001
  30. Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang MH. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B Biol. 2019;190:103-09. https://doi.org/10.1016/j.jphotobiol.2018.11.017
  31. Ganesan V, Hariram M, Vivekanandhan S, Muthuramkumar S. Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Mater Sci Semicond Process. 2020;105:104739. https://doi.org/10.1016/j.mssp.2019.104739
  32. Rozamond Y Sweeney , Chuanbin Mao, Xiaoxia Gao, Justin L Burt, Angela M Belcher, George Georgiou BLI. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem & Biol. 2004;11:15553-59. 10.1016/j.chembiol.2004.08.022 https://doi.org/10.1016/j.chembiol.2004.08.022
  33. Bai HJ, Zhang ZM, Gong J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett. 2006;28(14):1135-39. https://doi.org/10.1007/s10529-006-9063-1
  34. Bai HJ, Zhang ZM. Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett. 2009;63(9-10):764-66. http://dx.doi.org/10.1016/j.matlet.2008.12.050
  35. Maroušek J, Gavurová B, Strunecký O, Maroušková A, Sekar M, Marek V. Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel. 2023;344. https://doi.org/10.1016/j.fuel.2023.128056
  36. Maroušek J, Maroušková A, Gavurová B, Tu?ek D, Strunecký O. Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour Technol. 2023;374. https://doi.org/10.1016/j.biortech.2023.128802
  37. Annamalai J, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. ApplNanosci (Switzerland). 2015;5(5):603-07. https://doi.org/10.1007/s13204-014-0353-y
  38. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 2007;57(1):97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010
  39. Merin DD, Prakash S, Bhimba BV. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med. 2010;3(10):797-99. http://dx.doi.org/10.1016/S1995-7645(10)60191-5
  40. Salem DMSA, Ismail MM, Aly-Eldeen MA. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt J Aquat Res. 2019;45(3):197-204. https://doi.org/10.1016/j.ejar.2019.07.002
  41. El-Kassas HY, Aly-Eldeen MA, Gharib SM. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanolog Sin. 2016;35(8):89-98. https://doi.org/10.1007/s13131-016-0880-3
  42. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci (Switzerland). 2014;4(5):571-76. https://doi.org/10.1007/s13204-013-0233-x
  43. Mandal RP, Sekh S, Sarkar N Sen, Chattopadhyay D, De S. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation. Mater Rese Express. 2016;3(5):1-11. http://dx.doi.org/10.1088/2053-1591/3/5/055007
  44. Ghosh S, Ahmad R, Banerjee K, AlAjmi MF, Rahman S. Mechanistic aspects of microbe-mediated nanoparticle synthesis. Front Microbiol. 2021;12:1-12. https://doi.org/10.3389/fmicb.2021.638068
  45. Ayesha A. Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol. 2017;11(2):119.
  46. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod. 2020;272:122880. https://doi.org/10.1016/j.jclepro.2020.122880
  47. Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes-A review. Colloids Surf B Biointerfaces. 2014;121:474-83. http://dx.doi.org/10.1016/j.colsurfb.2014.05.027
  48. Grasso G, Zane D, Dragone R. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials. 2020;10(1). https://doi.org/10.3390/nano10010011
  49. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol. 2018;16(1). https://doi.org/10.1186/s12951-018-0334-5
  50. Bartoš V, Vochozka M, Šanderová V. Copper and aluminium as economically imperfect substitutes, production and price development. Acta Montan Slovaca. 2022;27(2):462-78. https://doi.org/10.46544/AMS.v27i2.14
  51. Vochozka M, Kalinová E, Gao P, Smolíková L. Development of copper price from july 1959 and predicted development till the end of year 2022. Acta Montan Slovaca. 2021;26(2):262-80. https://doi.org/10.46544/AMS.v26i2.07
  52. Rowland Z, Bláhová A, Gao P. Silver as a value keeper and wealth distributor during an economic recession. Acta Montan Slovaca. 2021;26(4):796-809. https://doi.org/10.46544/AMS.v26i4.16
  53. Nováková L, Novotná L, Procházková M. Predicted future development of imperfect complementary goods – Copper and zinc until 2030. Acta Montan Slovaca. 2022;27(1):135-51. https://doi.org/10.46544/AMS.v27i1.10
  54. Pathakoti K, Manubolu M, Hwang HM. Nanotechnology applications for environmental industry . Handb. Nanomater Indust Appl. 2018;894-907. http://dx.doi.org/10.1016/B978-0-12-813351-4.00050-X
  55. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnol. 2018;16(1):1-24. https://doi.org/10.1186/s12951-018-0408-4
  56. Maroušek J. Review: Nanoparticles can change (bio) hydrogen competitiveness. Fuel. 2022;328.
  57. Maroušek J. Aluminum nanoparticles from liquid packaging board improve the competitiveness of (bio)diesel. Clean Technol Environ Pol. 2022;1059-67. https://doi.org/10.1016/j.fuel.2022.125318
  58. Oliva-Arancibia B, Órdenes-Aenishanslins N, Bruna N, Ibarra PS, Zacconi FC, Pérez-Donoso JM et al. Co-synthesis of medium-chain-length polyhydroxyalkanoates and CdS quantum dots nanoparticles in Pseudomonas putida KT2440. J Biotechnol. 2017;264:29-37. http://dx.doi.org/10.1016/j.jbiotec.2017.10.013
  59. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol. 2015;27(5):1861-69. https://doi.org/10.1007/s10811-014-0492-2
  60. Momeni S, Nabipour I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol. 2015;176(7):1937-49. https://doi.org/10.1007/s12010-015-1690-3
  61. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. JBiotechnol. 2007;128(3):648-53. https://doi.org/10.1016/j.jbiotec.2006.11.014

Downloads

Download data is not yet available.