Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 10 No. 3 (2023)

Biofilm inhibitory potential of Oscillatoria tenuis against Candida albicans

DOI
https://doi.org/10.14719/pst.2434
Submitted
16 February 2023
Published
13-06-2023 — Updated on 02-07-2023
Versions

Abstract

Prokaryotic autotrophs have a key role in maintaining the sustainability of nature. Their secondary metabolites and stored chemicals have wide utility in human life. Cyanophytes, the primitive producers, can become a necessity of the modern world as they have enormous unexplored features. Candida albicans, an opportunistic pathogen having multidrug resistance, fallout health concerns in human and animal hosts. This study focused on the antibiofilm potential of Oscillatoria tenuis NTAPD 02, isolated from a hydrocarbon-polluted area against the hyphal switching of Candida albicans. Ethanolic extract of the algal sample, OEE, was taken to perform the biofilm quantification test and CLSM studies to determine the antibiofilm potential of Oscillatoria tenuis against Candida albicans. The MBIC for OEE was found to be 30 µg/mL against C. albicans and also shows a 70.8% reduction of fungal biofilm. The GC-MS and FTIR analysis illustrates the presence of potent phenolic hydrocarbons having an anti-proliferative effect. OEE was also found stress generative in C. elegans (500 µg/mL). The ROS generation in the worms intensified by increased concentration of OEE. The study proves that Oscillatoria tenuis, NTAPD 02, can be considered an anti-proliferative alga against C. albicans invasions.

References

  1. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology. 2018; 16:397-409. https://doi.org/10.1038/s41579-018-0019-y
  2. Sauer K, Stoodley P, Goeres DM. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology. 2022; 20:608-20. https://doi.org/10.1038/s41579-022-00767-0
  3. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections Science. 1999; 284:1318-22.; https://doi.org/10.1126/science.284.5418.1318 https://www.science.org/doi/10.1126/science.284.5418.1318
  4. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial bio?lm formation. Nature. 2005;436:1171-82. https://www.nature.com/articles/nature03912 https://doi.org/10.1038/nature03912
  5. Noble S, Gianetti B, Witchley J. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology. 2017;15:96-108. https://doi.org/10.1038/nrmicro.2016.157
  6. Anitha Krishnan P. Fungal Infections of the oral mucosa. Indian Journal of Dental Research. 2012; 23(5):650-59. https://www.ijdr.in/text.asp?2012/23/5/650/107384 https://doi.org/10.4103/0970-9290.107384
  7. Costa B, Colleoni M, Conti S, Parolaro D, Franke C, Trovsto AE, Giagnoni G. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch Pharmacol. 2004; 369(3):294-99. https://doi.org/10.1007/s00210-004-0871-3
  8. Falaise, Charlotte E. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine drugs. 2016; 14(9):159. https://doi.org/10.3390/md14090159
  9. Okai Y, Higash-Okai K. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). International Journal of Immuno Pharmacology. 1997; 19(6):355-68. https://doi.org/10.1016/s0192-0561(97)00070-2.
  10. Vane JR, Botting RM. Anti-inflammatory drugs and their mechanism of action. Inflammation Research. 1998; 47:S78–S87. https://doi.org/10.1016/S0192-0561(97)00070-2
  11. Maivannan K, Karthikai devi G, Anantharaman P, Balasubramanian T. Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(2):114-20. https://doi.org/10.1016/S2221-1691(11)60007-5
  12. Luescher-Mattli M. Algae, a possible source for new drugs in the treatment of HIV and other viral diseases. Current Medicinal Chemistry-Anti-Infective Agents. 2003;219-25. https://doi.org/10.2174/1568012033483051
  13. anti-herpetic activity of sulphated polysaccharide fractions from Caulerpa racemosa. Phytochemistry. 2005; 65(23):3151-57. https://doi.org/10.1016/j.phytochem.2004.07.025
  14. Boonchum W, Peerapornpisal Y, Kanjanapothi D, Pekkoh J. Antimicrobial and anti-inflammatory properties of various seaweeds from the gulf of Thailand. International Journal of Agriculture & Biology. 2011;10-463. https://www.researchgate.net/publication/259705473_Antimicrobial_and_Anti-inflammatory_Properties_of_Various_Seaweeds_from_the_Gulf_of_Thailand
  15. Deepa KP, Panneerselvam A, Thajuddin N. Seasonal variation of planktonic micro algal and cyanobacterial diversity in the temple pond of Tepakulam, Tiruchirappalli, Tamil Nadu. ZENITH International Journal of Multidisciplinary Research. 2019; 9(3):23-28.https://www.semanticscholar.org/paper/Seasonal-variation-of-planktonic-micro-algal-and-in-Deepa-Panneerselvam/fc04d27c33447a7d427994a7e95b7792c6399d61
  16. Thajuddin N, Subramanian G. Cyanobacterial biodiversity and potential applications in Biotechnology. Current Science. 2005; 89:47-57. https://www.jstor.org/stable/24110431
  17. Deepa K.P. A comprehensive analysis on carbon assimilation and longevity of algae in induced stress condition. Journal of Emerging Technologies and Innovative Research. 2019; 6(3):340-42. https://www.jetir.org/papers/JETIR1903654.pdf
  18. Baldev E, Ali M, Pugazhendy A, Thajuddin N. Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. 2021; 294(6):120484. https://doi.org/10.1016/j.fuel.2021.120484
  19. Deepa KP, Panneerselvam A, Thajuddin N. Growth and proximate composition of waste water isolated microalga Coelastrella under different nutrient conditions. International Journal of Research and Analytical Reviews. 2018; 5(4):239-43.
  20. Deepa KP, Panneerselvam A, Thajuddin A. A study on the waning effect of oil spill isolated microalga Coelastrella sp. on a synthetic dye, Eriochrome black T. Asian Journal of Microbiology, Biotechnology and Environmental Sciences 2019; 21(1):205-14. http://www.envirobiotechjournals.com/article_abstract.php?aid=9457&iid=270&jid=1
  21. Deepa KP, Panneerselvam A, Thajuddin N. Biodegradation studies of a microalgae, Coelastrella sp. NTAPD 01 isolated from hydrocarbon spills. Research Journal of Biotechnology. 2020; 15(3):114-19. https://worldresearchersassociations.com/Archives/RJBT/Vol(15)2020/March2020.aspx
  22. Sayed Rashad, Marwa A Elchaghaby, Ghadir A El-Chaghaby. Aquatic microalgae “Anabaena oryzae”: phenolic compounds, antioxidant activity and antibacterial activity against Streptococcus mutans oral bacteria. Egyptian Journal of Aquatic Biology and Fisheries. 2020; 24(7):203-10. https://doi: 10.21608/ejabf.2020.119554
  23. Noaman NH, Fattah A, Khaleafa M, Zaky SH. Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiol Res. 2004; 159:395-402. https://doi.org/10.1016/j.micres.2004.09.001
  24. Cameron Roy E. Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Transactions of the American Microscopical Society. JSTOR. 1962; 81(4):379-84. https://doi.org/10.2307/3223790
  25. Careri M, Furlattini L, Mangia A, Musci M, Anklam E, Theobald A, Hoist C. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. Chromatogr. 2001; 912:61-67. https://doi.org/10.1016/s0021-9673(01)00545-3
  26. Lavania R, Narayanasamy M, Kavitha S, Thajuddin N. Glycoprotein prompted plausible bactericidal and antibiofilm outturn of extracellular polymers from Nostoc microscopicum. Applied Biochemistry and Biotechnology. 2020; 191. https://doi.org/10.1007/s12010-019-03179-8.
  27. Smoker JA, Barnum SR. Rapid small-scale DNA isolation from filamentous cyanobacteria. FEMS Microbiology Letters. 1988; 56:119-22. https://doi.org/10.1111/j.1574-6968.1988.tb03161.x
  28. Illavrasi A, Mubarak Ali D, Praveen Kumar R, Baldev E, Thajuddin N. Optimization of various growth media to fresh water microalgae for biomass production. Biotechnology. 2011; 10(6):540-45. https://scialert.net/abstract/?doi=biotech.2011.540.545 https://doi.org/10.3923/biotech.2011.540.545
  29. Seneviratne CJ, Silva WJ, Jin LJ, Samaranayake YH, Samaranayake LP. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch Oral Biol, 2009; 54:1052-60. https://doi.org/10.1016/j.archoralbio.2009.08.002
  30. Vandenbosch D, Braeckmans K, Nelis HJ, Coenye T. Fungicidal activity of miconazole against Candida spp. biofilms. Journal of Antimicrobial Chemotherapy 2010; 65:694–700. https://doi.org/10.1093/jac/dkq019
  31. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard, 7th edn. Clinical and Laboratory Standards Institute document M7-A7. 2006; Clinical and Laboratory Standards Institute, Wayne. https://clsi.org/media/1928/m07ed11_sample.pdf
  32. Baldisseri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefic G. Therapeutic failures of antibiotics used to treat macrolide susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol. 2016; 44:2721-27. https://doi.org/10.1128/JCM.00512-06
  33. Nithya C, Begum MF, Pandian SK. Marine bacterial isolates inhibit bio?lm formation and disrupt mature bio?lms of Pseudomonas aeruginosa PAO1. Microbial Biotechnology. 2010; 88:341-58. https://doi.org/10.1007/s00203-010-0612-6
  34. Christensen GD, Simpson WA, Biso AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermis to smooth surfaces. Infect Immun. 1982; 37:318-26. https://doi.org/10.1128/iai.37.1.318-326.1982
  35. Lewczuk Bogdan, Natalia Szyry?ska. Field-emission scanning electron microscope as a tool for large-area and large-volume ultrastructural studies. Animals. 2021; 11(12):3390. https://doi:10.3390/ani11123390
  36. Roger Mailler, Jacob Graves, Nathan Willy, Trevor Sarratt. A biologically accurate simulation of the locomotion of Caenorhabditis elegans. International Journal on Advances in Life Sciences. 2010; 2(3):82-93. https://doi.org/10.1109/BioSciencesWorld.2010.18 https://www.iariajournals.org/life_sciences/lifsci_v2_n34_2010_paged.pd
  37. Manikandan SS, Ganesapandian M, Kumarguru AK. Emerging of multidrug resistance human pathogens from urinary tract infections. Curr Res Bacteriol. 2011; 4(1):9-15. https://doi.org 10.3923/crb.2011.9.15
  38. Sarah E Murphy, Tihane Bicanec. Drug resistance and novel therapeutic approaches in invasive candidiasis. Front Cell Infect Microbiol. 2021; 11. https://doi.org/10.3389/fcimb.2021.759408
  39. Mathew B, Sankaranarayanan R, Nair PP, Vargheses C, Somanathan T, Amma BP, Nair MK. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutrition and Cancer. 1995; 24(2):197-202. https://doi.org/10.1080/01635589509514407
  40. Barbalace MC, Malaguti M, Giusti L, Lucacchini A, Hrelia S, Angeloni C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. International Journal of Molecular Sciences. 2019; 20(12). https://doi.org/10.3390/ijms20123061
  41. Robertson, Ruairi C. The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Marine drugs. 2015;13(8):5402-24. https://doi.org/10.3390/md13085402.

Downloads

Download data is not yet available.