Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 1 (2024)

Evaluating the production potential of six Combretum species in the biomimetic synthesis of silver nanoparticles

DOI
https://doi.org/10.14719/pst.2489
Submitted
8 March 2023
Published
10-01-2024 — Updated on 23-01-2024
Versions

Abstract

Existing research has shown that plants are best suited for the ecofriendly green synthesis of nanoparticles. This study reported novel findings on the biomimetic synthesis of silver nanoparticles using the aqueous leaf extract of six medicinal plant species in the genus, Combretum (C. paniculatum, C. dolichopetalum, C. platypterum, C racemosum, C. bauchiense, and C. demeusei). It was concerned with the characterization, phytochemical screening, antimicrobial and cytological evaluation of the synthesized silver nanoparticles (AgNPs). The novelty of this study lies in the creation of a nanoparticle production index (NPPI) of the species based on their crystalline sizes (in nm) and yield (in mg/l) of AgNPs. This NPPI can be defined as a measure of the quantity of particles produced with respect to the experimental species.  The study also investigated whether these species would produce similar results since they belong to the same genus. It was observed that the smaller the size of the nanoparticles, the higher the production index. The highest production index was observed in C. paniculatum (18.75 nm, 144. 6 mg/l), and the least in C. demeusei (0 nm, 6.3 mg/l). The AgNPs were characterized using various standard analytical techniques. The X-ray diffraction analysis indicated that the species showed 2 theta values in the 40° range, all corresponding to miller indices of (200). The synthesized AgNPs showed varying but significant antimicrobial activities. Also, majority of the species showed a high NPPI. The study heralds a system, “phytonanotaxonomy”, the classification of plants of the same taxa based on their NPPI.

References

  1. Khan I, Saheed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  2. Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017;117:6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558
  3. Zhang X, Liu Z, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications and therapeutic approaches. Int. J. Mol. Sci. 2016;17:1501–1534. https://doi.org/10.3390/ijms17091534
  4. Dhanalakshmi T, Rajendran S. Synthesis of silver nanoparticles using Tridax procumbens and its antimicrobial activity. Arch. Appl. Sci. Res. 2012;4:12891–293.
  5. Cale DF, Jessica S, Maria RP. Heterogeneous responses of ovarian cancer cells to silver nanoparticles as a single agent and in combination with cisplatin. J. Nanomater. 2017:11–1. https://doi.org/10.1155/2017/5107485
  6. Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013;51;15–25. https://doi.org/10.1016/j.fct.2012.09.021
  7. Chahardoli A, Karimia N, Fattahi A. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran. J. Pharm. Res. 2017;16:1167–1175. https://doi.org/10.22037/ijpr.2017.2066
  8. Su H, Li S, Jin Y, Xian ZY, Yang D, Zhou W, et al. Nanomaterial-based biosensors for biological detections. Adv. Healthc. Technol. 2017;3:19–29. https://doi.org/10.2147/AHCT.S94025
  9. Entsar HT, Noha MA. Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int. J. Zool. Res. 2016;12:47–50. https://doi.org/10.3923/ijzr.2016.47.50
  10. Borase HP, Salunkhe BK, Salunke RB, Patil CD, Hallsworth JE, Kim BS and Patil SV. Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Biotechnol. Appl. Biochem. 2014;173:1–29. https://doi.org/10.1007/s12010-014-0831-4
  11. Borase HP, Salunkhe RB, Patil CD, Suryawanshi RK, Salunke BK, Wagh ND, Patil SV. Innovative approach for urease inhibition by Ficus carica extract-fabricated silver nanoparticles: An in vitro study. Biotechnol. Appl. Biochem. 2015;62:780–784. https://doi.org/10.1002/bab.1341
  12. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: Their advantages and disadvantages. In: AIP Conference Proceedings, AIP Publishing Centre, New York1724(1):id.02004. Available at www. http://adsabs.harvard.edu/abs/2016AIPC.1724b0048P.2014.
  13. Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, Parajuli N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021;6:3–23. https://doi.org/10.1155/2021/6687290
  14. Supraja S, Ali SM, Chakravarthy N, Jaya Prakash Priya A, Sagadevan E, Kasinathan MK, Arumugam P. Green synthesis of silver nanoparticles from Cynodon dactylon leaf extract. Int J Chem Tech Res. 2013;5:271–277.
  15. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th edition, Horwitz. W, Lalimer G, editors. Maryland-USA, Association of Official Analytical Chemists International, 2005. 96pp.
  16. Kora AJ, Sashidhar RB, Arunachalam J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. 2010;82:670–679. https://doi.org/10.1016/j.carbpol.2010.05.034
  17. Al-Ahmadi MS. Cytogenetic and molecular assessment of some nanoparticles using Allium sativum assay. Afr. J. Biotechnol. 2019;18:783–796. https://doi.org/10.5897/AJB2019.16918
  18. Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:265–275. https://doi.org/10.1016/j.jrras.2015.01.007
  19. Chahardoli A, Karimia N, Fattahi A. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran. J. Pharm. Res. 2017;16:1167–1175. https://doi.org/10.22037/ijpr.2017.2066
  20. Chung I, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res. Lett. 2016;11(40):1–14. https://doi.org/10.1186/s11671-016-1257-4
  21. Elumalai D, Hemavathi M, Deepa CV, Kaleena PK. Evaluation of phytosynthesized silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol. Control. 2012;2:15–26. https://doi.org/10.1016/j.parepi.2017.09.001
  22. Ghosh S, Patil S, Ahire, M., Kitture R, Kale S, Pardesi K, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012;27:483–496. https://doi.org/10.2147/IJN.S24793
  23. Mikhailov OV, Mikhailova EO. Elemental silver nanoparticles: Biosynthesis and bio applications. Mater. 2019;12(19):3177–3210. https://doi.org/10.3390/ma12193177
  24. Tak YK, Pal S, Naoghare PK, Rangasamy S, Song JM. Shape-dependent skin penetration of silver nanoparticles: Does it really matter?. Sci. Rep. 2015;5:16908–16911. https://doi.org/10.1038/srep16908
  25. Ahmed S, Ikram S. Silver nanoparticles; one pot green synthesis using Terminalia arjuna extract for biological application. J Nanomed. Nanotechnol. 2015;6(4):1–6.
  26. El-Rafie MH, Hamed AM. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaf extracts of four Terminalia species. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2014;5(3):1–11. https://doi.org/10.1088/2043-6262/5/3/035008
  27. Ganesh B, Thulukkanan K, Amirthalingam T. Herbal nanosilver synthesized from Terminalia paniculata (Combretaceae) by green chemistry approach and testing its antimicrobial efficacy against human pathogen. Indian J. Sci. 2015;15(46):59–68.
  28. Kumar MK, Sinha M, Mandal KB, Ghosh RA, Kumar SK,¬ Reddy SP. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A: Mol Biomol Spectrosc. 2012;91:228–233. https://doi.org/10.1016/j.saa.2012.02.001
  29. Shah W, Patil U, Sharma A. Green synthesis of silver nanoparticles from stem bark extract of Terminalia tomentosa Roxb. (Wight and Arn.). Der Pharma Chem. 2014;6(5):197–202.
  30. Dada AO, Adekola FA, Adeyemi OS, Bello OM, Oluwaseun AC, Awakan OJ, Grace F A A. Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. In: Maaz K, editor. Silver Nanoparticles - Fabrication, Characterization and Applications. IntechOpen, London, UK. 2018. p. 165–184. https://doi.org/10.5772/intechopen.76947
  31. Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9:217–227. https://doi.org/10.1016/j.jrras.2015.10.002
  32. Anandalakshmi K, Venugobal J, Ramasamy V. ¬Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016;6:399–408. https://doi.org/10.1007/s13204-015-0449-z
  33. Christensen L, Vivekanandhan S, Misra M, Mohanty AK. Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. Lett. 2012;2:429–434. https://doi.org/10.5185/amlett.2011.4256
  34. Nanocomposix. UV/VIS/IR Spectroscopy Analysis of Nanoparticles. 2012. http://50.87.149.212/sites/default/les/nanoComposix%20Guidelines%20for%20UVvis%0Analysis.pdf .
  35. Bera B. Nanoporous silicon prepared by vapour phase strain etch and sacri?cial technique. In: Proceedings of the International Conference on Microelectronic Circuit and System. (Kolkata, India). 2015. p. 42–45.
  36. Nobbmann UL. Polydispersity – What does it mean for DLS and chromatography. 2014. http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography/.
  37. Jemal K, Sandeep BV, Pola S. Synthesis, characterization and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extract mediated silver nanoparticles. J. Nanomater. 2017;4:1–11. https://doi.org/10.1155/2017/4213275
  38. Yan JK, Cai PF, Cao XQ, Ma HL, Zhang Q, Hu NZ, Zhao YZ. Green synthesis of silver nanoparticles using 4-acetamido-TEMPO-oxidized curdlan. Carbohydr. Polym. 2013;97: 391–397. https://doi.org/10.1016/j.carbpol.2013.05.049
  39. Hussain M, Raja IN, Iqbal M, Aslam S. Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iran. J. Sci. Technol. Trans. A Sci. 2017;43(6):1–11. https://doi.org/10.1007/s40995-017-0431-6
  40. Jain S, Mehata SM. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 2017;7(1):15867–15880. https://doi.org/10.1038/s41598-017-15724-8
  41. Dawe A, Pierre S, Tsala ED, Habtemariam S. Phytochemical constituents of Combretum Loefl. (Combretaceae). Pharm. Crop. 2013;4:385–9. https://doi.org/10.2174/2210290601304010038
  42. Niass O, Diop A, Mariko M, Géye R, Thiam, K, Sarr OS, Ndiaye, et al. Comparative study of the composition of aqueous extracts of green tea (Camellia sinensis) in total alkaloids, total flavonoids, total polyphenols and antioxidant activity with the leaves of Combretum glutinosum, Combretum micranthum and the red pulps of Hibiscus sabdariffa. Int. J. Progress. Sci. Technol. 2017;5:71–75.
  43. Nounagon MS, Dah-Nouvlessounon D, N’tcha C, Akorede SM, Sina H. Phytochemical screening and biological activities of Combretum adenogonium leaves extracts. Eur. Sci. J. 2017;13:358–375. https://doi.org/10.19044/esj.2017.v13n30p358
  44. Masum MI, Siddiqa M, Ali K, Zhang Y, Abdallah Y, Ibrahim E, et al. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front. Microbiol. 2019;10(820):1–18. https://doi.org/10.3389/fmicb.2019.00820
  45. Sharma G, Nam JS, Sharma AR, Lee SS. Antimicrobial potential of silver nanoparticles synthesized using medicinal herb Coptidis rhizome. Mol. 2018;23(9):2268–2280. https://doi.org/10.3390/molecules23092268
  46. Shehzad A, Qureshi M, Jabeen S, Ahmad R, Alabdalall AH, Aljafary MA, Al-Suhaimi E. Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ. 2018;6:e6086–e6101. https://doi.org/10.7717/peerj.6086
  47. Riss TL, Moravec RA, Niles AL. Cytotoxicity testing: Measuring viable cells, dead cells and detecting mechanism of cell death. Methods Mol. Biol. 2011;740:103–114. https://doi.org/10.1007/978-1-61779-108-6_12
  48. Turkoglu S. Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay. Pestic. Biochem. Phys. 2012;103:224–230. https://doi.org/10.1016/j.pestbp.2012.06.001
  49. Andrade LF, Davide LC, Gedraite LS. The effect of cyanide compounds, fluorides and inorganic oxides present in spent pot Liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 2010;73:626–631. https://doi.org/10.1016/j.ecoenv.2009.12.012
  50. Wong C, Stearns T. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol. 2005;6:1–12. https://doi.org/10.1186/1471-2121-6-6
  51. Sarkar D, Sharma A, Talukder G. Plant extracts as modulators of genotoxic effects, Bronx, -NY, USA, Scientific Publications Department, The New York Botanical Garden, 1996. p. 276–300. https://doi.org/10.1007/BF02856614
  52. Ma C, White JC, Dhankher OP, Xing B. Metal-based nanotoxicity and detoxi?cation pathways in higher plants. Environ. Sci. Technol. 2015;49:7109–7122. https://doi.org/10.1021/acs.est.5b00685

Downloads

Download data is not yet available.