Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Vol. 10 No. sp2 (2023)

Biofuels from cyanobacteria -a metabolic engineering approach

DOI
https://doi.org/10.14719/pst.2505
Submitted
14 March 2023
Published
10-11-2023 — Updated on 22-12-2023
Versions

Abstract

The concern about the limited availability of petroleum-based fuels and their role in increasing CO2 levels in the atmosphere has sparked significant attention toward biofuel and bioenergy production. The global pursuit of sustainable energy sources has catalyzed innovative research into alternative biofuel production strategies. Transforming CO2 into usable fuels and chemicals is gaining even more prominence. Cyanobacteria, renowned for their photosynthetic ability, have emerged as promising candidates for biofuel synthesis. Their ability to convert solar energy and carbon dioxide into valuable biofuels makes them a compelling avenue for sustainable energy solutions. Using metabolic engineering principles, researchers have endeavored to optimize cyanobacterial metabolic pathways, enhance photosynthetic efficiency, and redirect carbon flux toward biofuel precursors. Numerous species of cyanobacteria offer genetic and metabolic traits that facilitate manipulation, and their photosynthetic characteristics imply that carbohydrates, fatty acids, and even alcohol could serve as potential renewable sources for biofuels. This review showcases cyanobacteria's ability as a biofuel source and emphasizes the transformative influence of metabolic engineering employed in the creation and production of "cyanofuels”

References

  1. Sharma NK, Tiwari SP, Tripathi K, Rai AK. Sustainability and cyanobacteria (blue-green algae): facts and challenges. Journal of Applied Phycology. 2011;23:1059-81. https://doi.org/10.1007/s10811-010-9626-3
  2. Chaib S, Pistevos JC, Bertrand C, Bonnard I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Research. 2021 Apr 1;54:102213. https://doi.org/10.1016/j.algal.2021.102213
  3. Jareonsin S, Pumas C. Advantages of heterotrophic microalgae as a host for phytochemicals production. Frontiers in Bioengineering and Biotechnology. 2021;9:628597. https://doi.org/10.3389/fbioe.2021.628597
  4. Anahas AM, Muralitharan G. Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Conversion and Management. 2018;157:423-37. https://doi.org/10.1016/j.enconman.2017.12.012
  5. Sivaramakrishnan R, Suresh S, Kanwal S, Ramadoss G, Ramprakash B, Incharoensakdi A. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks. International Journal of Molecular Sciences. 2022;23(5):2623. https://doi.org/10.3390/ijms23052623
  6. Singh SP, Pathak J, Sinha RP. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renewable and Sustainable Energy Reviews. 2017;69:578-95. https://doi.org/10.1016/j.rser.2016.11.110
  7. Pathak J, Rajneesh, Maurya PK, Singh SP, Haeder DP, Sinha RP. Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science. 2018;6:7. https://doi.org/10.3389/fenvs.2018.00007
  8. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource technology. 2011;102(22):10163-72. https://doi.org/10.1016/j.biortech.2011.08.030
  9. Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Current opinion in biotechnology. 2015;33:8-14. https://doi.org/10.1016/j.copbio.2014.09.007
  10. Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Applied microbiology and biotechnology. 2011;91:471-90. https://doi.org/10.1007/s00253-011-3394-0
  11. Emamalipour M, Seidi K, Zununi Vahed S, Jahanban-Esfahlan A, Jaymand M, Majdi H, Amoozgar Z, Chitkushev LT, Javaheri T, Jahanban-Esfahlan R, Zare P. Horizontal gene transfer: from evolutionary flexibility to disease progression. Frontiers in cell and developmental biology. 2020;8:229. https://doi.org/10.3389/fcell.2020.00229
  12. Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. Biotechnology for Biofuels. 2021;14(1):240. https://doi.org/10.1186/s13068-021-02091-w
  13. de Farias Silva CE, Bertucco A. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochemistry. 2016;51(11):1833-42. https://doi.org/10.1016/j.procbio.2016.02.016
  14. Mandal S, Rath J. Extremophilic cyanobacteria for novel drug development. Springer; 2014.
  15. Demay J, Bernard C, Reinhardt A, Marie B. Natural products from cyanobacteria: Focus on beneficial activities. Marine drugs. 2019;17(6):320. https://doi.org/10.3390/md17060320
  16. Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends in microbiology. 2015;23(10):642-52. https://doi.org/10.1016/j.tim.2015.07.008
  17. Taiz L, Zeiger E. Chapter 12: Assimilation of mineral nutrients. Plant Physiology, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA. 2006:265-6.
  18. Vijay D, Akhtar MK, Hess WR. Genetic and metabolic advances in the engineering of cyanobacteria. Current opinion in biotechnology. 2019;59:150-6. https://doi.org/10.1016/j.copbio.2019.05.012
  19. Taton A, Ecker A, Diaz B, Moss NA, Anderson B, Reher R, Leao TF, Simkovsky R, Dorrestein PC, Gerwick L, Gerwick WH. Heterologous expression of cryptomaldamide in a cyanobacterial host. ACS synthetic biology. 2020;9(12):3364-76. https://doi.org/10.1021/acssynbio.0c00431
  20. Zhang R, Xu W, Shao S, Wang Q. Gene silencing through CRISPR interference in bacteria: current advances and future prospects. Frontiers in Microbiology. 2021;12:635227. https://doi.org/10.3389/fmicb.2021.635227
  21. Ongley SE, Bian X, Zhang Y, Chau R, Gerwick WH, Mu?ller R, Neilan BA. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS chemical biology. 2013;8(9):1888-93. https://doi.org/10.1021/cb400189j
  22. Park SH, Lee K, Jang JW, Hahn JS. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose. ACS Synthetic Biology. 2018 ;8(2):346-57. https://doi.org/10.1021/acssynbio.8b00388
  23. Kudoh K, Kawano Y, Hotta S, Sekine M, Watanabe T, Ihara M. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. Journal of bioscience and bioengineering. 2014;118(1):20-8. https://doi.org/10.1016/j.jbiosc.2013.12.018
  24. Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science. 2016;9(4):1400-11. https://doi.org/10.1039/C5EE03102H
  25. Lai MJ, Lan EI. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria. Biotechnology and Bioengineering. 2019;116(4):893-903. https://doi.org/10.1002/bit.26903
  26. Sarnaik A, Abernathy MH, Han X, Ouyang Y, Xia K, Chen Y, Cress B, Zhang F, Lali A, Pandit R, Linhardt RJ. Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. Algal Research. 2019 Jan 1;37:57-63. https://doi.org/10.1016/j.algal.2018.11.010
  27. Chin T, Okuda Y, Ikeuchi M. Improved sorbitol production and growth in cyanobacteria using promiscuous haloacid dehalogenase-like hydrolase. Journal of Biotechnology. 2019;306:100002. https://doi.org/10.1016/j.btecx.2019.100002
  28. Fan ES, Lu KW, Wen RC, Shen CR. Photosynthetic reduction of xylose to xylitol using cyanobacteria. Biotechnology Journal. 2020;15(6):1900354. https://doi.org/10.1002/biot.201900354
  29. Diao J, Song X, Zhang L, Cui J, Chen L, Zhang W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metabolic Engineering. 2020;61:275-87. https://doi.org/10.1016/j.ymben.2020.07.003
  30. Choi SY, Woo HM. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria. ACS synthetic biology. 2020;9(9):2351-61. https://doi.org/10.1021/acssynbio.0c00091
  31. Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World Journal of Microbiology and Biotechnology. 2022;38(6):100. https://doi.org/10.1007/s11274-022-03285-6
  32. Cheng J, Zhang K, Hou Y. The current situations and limitations of genetic engineering in cyanobacteria: a mini review. Molecular Biology Reports. 2023;29:1-7. https://doi.org/10.1007/s11033-023-08456-8
  33. Wendt KE, Pakrasi HB. Genomics approaches to deciphering natural transformation in cyanobacteria. Frontiers in Microbiology. 2019;10:1259. https://doi.org/10.3389/fmicb.2019.01259
  34. Stucken K, Koch R, Dagan T. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biological research. 2013;46(4):373-82. http://dx.doi.org/10.4067/S0716-97602013000400009
  35. Nies F, Mielke M, Pochert J, Lamparter T. Natural transformation of the filamentous cyanobacterium Phormidium lacuna. PLoS One. 2020;15(6):e0234440. https://doi.org/10.1371/journal.pone.0234440
  36. Yerrapragada S, Siefert JL, Fox GE. Horizontal gene transfer in cyanobacterial signature genes. Horizontal Gene Transfer: Genomes in Flux. 2009;339-66. https://doi.org/10.1007/978-1-60327-853-9_20
  37. Opel F, Axmann IM, Klahn S. The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. Springer, Cham. 2022 https://doi.org/10.1007/10_2022_210
  38. Rai KK, Rai R, Singh S, Rai LC. Synthetic Biology Tools in Cyanobacterial Biotechnology: Recent Developments and Opportunities. Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. 2022:181-203. https://doi.org/10.1007/978-981-19-4101-6_10
  39. Ducat DC, Way JC, Silver PA. Engineering cyanobacteria to generate high-value products. Trends in biotechnology. 2011;29(2):95-103. https://doi.org/10.1016/j.tibtech.2010.12.003
  40. Zhou J, Li Y. Engineering cyanobacteria for fuels and chemicals production. Protein & cell. 2010;1(3):207-10. https://doi.org/10.1007/s13238-010-0043-9
  41. Khan AZ, Bilal M, Mehmood S, Sharma A, Iqbal HM. State-of-the-art genetic modalities to engineer cyanobacteria for sustainable biosynthesis of biofuel and fine chemicals to meet bio–economy challenges. Life. 2019;9(3):54. https://doi.org/10.3390/life9030054
  42. Takahama K, Matsuoka M, Nagahama K, Ogawa T. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. Journal of bioscience and bioengineering. 2003;95(3):302-5. https://doi.org/10.1016/S1389-1723(03)80034-8
  43. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PloS one. 2012 Nov 21;7(11):e50470. https://doi.org/10.1371/journal.pone.0050470
  44. Jindou S, Ito Y, Mito N, Uematsu K, Hosoda A, Tamura H. Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes. ACS synthetic biology. 2014;3(7):487-96. https://doi.org/10.1021/sb400197f
  45. Tan X, Du W, Lu X. Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Applied microbiology and biotechnology. 2015;99:2147-54. https://doi.org/10.1007/s00253-014-6273-7
  46. Rahman A, Prihantini NB, Nasruddin N. Fatty acid of microalgae as a potential feedstock for biodiesel production in Indonesia. In: AIP Conference Proceedings 2019 (Vol. 2062, No. 1). AIP Publishing. https://doi.org/10.1063/1.5086606
  47. Tarin NJ, Ali NM, Chamon AS, Mondol MN, Rahman MM, Aziz A. Optimizing Chlorella vulgaris and Anabaena variabilis Growth Conditions for Use as Biofuel Feedstock. Journal of the Asiatic Society of Bangladesh, Science. 2016;42(2):191-200.
  48. Moraes LE, Blow MJ, Hawley ER, Piao H, Kuo R, Chiniquy J, Shapiro N, Woyke T, Fadel JG, Hess M. Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production. AMB Express. 2017;7:1-9. https://doi.org/10.1186/s13568-017-0338-9
  49. Trejo M, Mejica GF, Saetang N, Lomlai P. Exploration of fatty acid methyl esters (FAME) in cyanobacteria for a wide range of algae-based biofuels. Maejo International Journal of Energy and Environmental Communication. 2020;2(3):35-42. https://doi.org/10.54279/mijeec.v2i3.245039
  50. Kushwaha D, Saha S, Dutta S. Enhanced biomass recovery during phycoremediation of Cr (VI) using cyanobacteria and prospect of biofuel production. Industrial & Engineering Chemistry Research. 2014;53(51):19754-64. https://doi.org/10.1021/ie501311c
  51. Ruffing AM. Engineered cyanobacteria: teaching an old bug new tricks. Bioengineered bugs. 2011;2(3):136-49. https://doi.org/10.4161/bbug.2.3.15285
  52. Parwani L, Bhatt M, Singh J. Potential biotechnological applications of cyanobacterial exopolysaccharides. Brazilian Archives of Biology and Technology. 2021;64:e21200401.
  53. Zymanczyk-Duda E, Samson SO, Brzezinska-Rodak M, Klimek-Ochab M. Versatile applications of cyanobacteria in biotechnology. Microorganisms. 2022;10(12):2318. https://doi.org/10.3390/microorganisms10122318
  54. Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco?friendly resource for biofuel production: a critical review. Biotechnology progress. 2019;35(5):e2835. https://doi.org/10.1002/btpr.2835
  55. Gharabaghi M, Delavai Amrei H, Moosavi Zenooz A, Shahrivar Guzullo J, Zokaee Ashtiani F. Biofuels: bioethanol, biodiesel, biogas, biohydrogen from plants and microalgae. CO2 Sequestration, Biofuels and Depollution. 2015:233-74. https://doi.org/10.1007/978-3-319-11906-9_6
  56. Roussou S, Albergati A, Liang F, Lindblad P. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metabolic engineering communications. 2021;12:e00161. https://doi.org/10.1016/j.mec.2021.e00161
  57. Afrin S, Khan MR, Zhang W, Wang Y, Zhang W, He L, Ma G. Membrane-located expression of thioesterase from Acinetobacter baylyi enhances free fatty acid production with decreased toxicity in Synechocystis sp. PCC6803. Frontiers in microbiology. 2018;9:2842. https://doi.org/10.3389/fmicb.2018.02842
  58. Kaczmarzyk D, Cengic I, Yao L, Hudson EP. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metabolic engineering. 2018;45:59-66. https://doi.org/10.1016/j.ymben.2017.11.014
  59. Yunus IS, Wichmann J, Wordenweber R, Lauersen KJ, Kruse O, Jones PR. Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel. Metabolic Engineering. 2018;49:201-11. https://doi.org/10.1016/j.ymben.2018.08.008
  60. Chaves JE, Rueda-Romero P, Kirst H, Melis A. Engineering isoprene synthase expression and activity in cyanobacteria. ACS synthetic biology. 2017;6(12):2281-92. https://doi.org/10.1021/acssynbio.7b00214
  61. Lin PC, Zhang F, Pakrasi HB. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metabolic Engineering Communications. 2021;12:e00164. https://doi.org/10.1016/j.mec.2021.e00164
  62. Lee HJ, Lee J, Lee SM, Um Y, Kim Y, Sim SJ, Choi JI, Woo HM. Direct conversion of CO2 to ?-farnesene using metabolically engineered Synechococcus elongatus PCC 7942. Journal of agricultural and food chemistry. 2017;65(48):10424-8. https://doi.org/10.1021/acs.jafc.7b03625
  63. Oliver JW, Machado IM, Yoneda H, Atsumi S. Combinatorial optimization of cyanobacterial 2, 3-butanediol production. Metabolic Engineering. 2014 Mar 1;22:76-82. https://doi.org/10.1016/j.ymben.2014.01.001
  64. Hirokawa Y, Kubo T, Soma Y, Saruta F, Hanai T. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942. Metabolic engineering. 2020;57:23-30. https://doi.org/10.1016/j.ymben.2019.07.012
  65. Liu X, Miao R, Lindberg P, Lindblad P. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO 2 in cyanobacteria. Energy and Environmental Science. 2019;12(9):2765-77. 10.1039/C9EE01214A
  66. Aboim JB, Oliveira D, Ferreira JE, Siqueira AS, Dall'Agnol LT, Rocha Filho GN, Gonçalves EC, Nascimento LA. Determination of biodiesel properties based on a fatty acid profile of eight Amazon cyanobacterial strains grown in two different culture media. RSC advances. 2016;6(111):109751-8. https://doi.org/10.1039/C6RA23268J
  67. Aboim JB, Oliveira DT, Mescouto VA, Dos Reis AS, da Rocha Filho GN, Santos AV, Xavier LP, Santos AS, Goncalves EC, do Nascimento LA. Optimization of light intensity and NaNO3 concentration in Amazon cyanobacteria cultivation to produce biodiesel. Molecules. 2019;24(12):2326. https://doi.org/10.3390/molecules24122326
  68. Liu X, Curtiss III R. Thermorecovery of cyanobacterial fatty acids at elevated temperatures. Journal of biotechnology. 2012;161(4):445-9. https://doi.org/10.1016/j.jbiotec.2012.08.013
  69. Santos-Merino M, Garcillan-Barcia MP, de la Cruz F. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. Biotechnology for biofuels. 2018;11(1):1-3. https://doi.org/10.1186/s13068-018-1243-4
  70. de Oliveira DT, Vasconcelos CT, Feitosa AM, Aboim JB, de Oliveira AD, Xavier LP, Santos AS, Goncalves EC, da Rocha Filho GN, do Nascimento LA. Lipid profile analysis of three new Amazonian cyanobacteria as potential sources of biodiesel. Fuel. 2018;234:785-8. https://doi.org/10.1016/j.fuel.2018.07.080
  71. Nithiya K, Subramanian P, Praveen Kumar D, Komalabharathi P, Karuppasamy Vikraman V. Bio-Oil: A Green
  72. Biofuel. In: Baskar C, Ramakrishna S, Daniela La Rosa A. (eds) Encyclopedia of Green Materials. Springer, Singapore 2022.
  73. Hu Z, Zheng Y, Yan F, Xiao B, Liu S. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy. 2013;52:119-25. https://doi.org/10.1016/j.energy.2013.01.059
  74. Sivaramakrishnan R, Incharoensakdi A. Cyanobacteria as renewable sources of bioenergy (biohydrogen, bioethanol, and bio-oil production). In: Ecophysiology and biochemistry of cyanobacteria. Singapore: Springer Nature Singapore. 2022. https://doi.org/10.1007/978-981-16-4873-1_19
  75. Sitther V, Tabatabai B, Fathabad SG, Gichuki S, Chen H, Arumanayagam AC. Cyanobacteria as a biofuel source: advances and applications. Advances in Cyanobacterial Biology. 2020:269-89. https://doi.org/10.1016/B978-0-12-819311-2.00018-8
  76. Converti A, Oliveira RP, Torres BR, Lodi A, Zilli M. Biogas production and valorization by means of a two-step biological process. Bioresource technology. 2009;100(23):5771-6. https://doi.org/10.1016/j.biortech.2009.05.072
  77. Zaki MA, Ashour M, Heneash AM, Mabrouk MM, Alprol AE, Khairy HM, Nour AM, Mansour AT, Hassanien HA, Gaber A, Elshobary ME. Potential Applications of native cyanobacterium isolate (Arthrospira platensis NIOF17/003) for biodiesel production and utilization of its byproduct in marine rotifer (Brachionus plicatilis) production. Sustainability. 2021;13(4):1769. https://doi.org/10.3390/su13041769
  78. Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB. CRISPR/Cas9 mediated targeted mutagenesis of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial cell factories. 2016;15:1-8. https://doi.org/10.1186/s12934-016-0514-7
  79. Higo A and Ehira S. Spatiotemporal gene repression system in the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. ACS Synth Biol. 2019;8(4):641–646. https://doi.org/10.1021/acssynbio.8b00496
  80. Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered. 2020;11(1):1208-20. https://doi.org/10.1080/21655979.2020.1837458
  81. Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic engineering. 2016;38:293-302. https://doi.org/10.1016/j.ymben.2016.09.006
  82. Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific reports. 2016;6(1):39681. https://doi.org/10.1038/srep39681

Downloads

Download data is not yet available.