Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Early Access

Physiological and AI-based study of endophytes on medicinal plants: A mini review

DOI
https://doi.org/10.14719/pst.2555
Submitted
31 March 2023
Published
31-08-2023
Versions

Abstract

Research on the natural resources found in medicinal plants and endophytes makes important contributions to a wide variety of fields, including drug development, agribusiness, biotechnology, and sustainable development. Endophytes are a group of microorganisms that can be discovered in the rhizosphere of plants being used in medical treatment. These microorganisms have the capability of producing a wide range of primary and secondary metabolites by utilizing a variety of distinct biosynthetic pathways. Several different technologies, such as genetic modification and artificial intelligence (AI), play a significant role in the acceleration of endophytic research. These methods aid in the discovery and synthesis of novel compounds with medicinal promise, the predictive analysis of bioactive compounds, the identification and classification of endophytes, and the optimization of potential bioactive compounds. In light of this, the current review focuses on providing a concise comprehension of the influence of bioactive compounds secreted by specific endophytes on medicinal plants through the application of significant technologies in the field of endophytic research.

References

  1. Jamwal VL, Gandhi SG. Endophytes as a source of High-value phytochemicals: Present scenario and future outlook. Endophytes Second. Metabolites Reference Ser. Phytochemistry. 2019; 571-90. https://doi.org/10.1007/978-3-319-90484-9_14
  2. Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6(11):1720-31. https://doi.org/10.4161/psb.6.11.17613
  3. Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 2017; 7:1-4. https://doi.org/10.1007/s13205-017-0942-z
  4. Li J, Zhao GZ, Chen HH, Wang HB, Qin S, Zhu WY, Xu LH, Jiang CL, Li WJ. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbio. 2008; 47(6):574-80. https://doi.org/10.1111/j.1472-765X.2008.02470.x
  5. Kusari S, Verma VC, Lamshoeft M, Spiteller M. An endophytic fungus from Azadirachtaindica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol. 2012; 28(3):1287-94. https://doi.org/10.1007/s11274-011-0876-2
  6. Molina G, Pimentel MR, Bertucci TC, Pastore GM. Application of fungal endophytes in biotechnological processes. Chem Eng Trans. 2012;27:1-6. https://doi.org/10.3303cet/1227049
  7. Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking plant secondary metabolites and plant microbiomes: a review. Front Plant Sci. 2021;12:621276. https://doi.org/10.3389/fpls.2021.621276b
  8. Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52. http://dx.doi.org/10.1186/s40659-019-0246-3
  9. Piasecka A, Jedrzejczak?Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytolo. 2015; 206(3):948-64. https://doi.org/10.1111/nph.13325
  10. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018; 23(4):762. https://doi.org/10.3390/molecules23040762
  11. Guerrieri A, Dong L, Bouwmeester HJ. Role and exploitation of underground chemical signaling in plants. Pest management science. 2019;75(9):2455-63. https://doi.org/10.1002/ps.5507
  12. Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci. 2022;12(3):1231. https://doi.org/10.3390/app12031231
  13. Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology. 2017;107(8):928-36. https://doi.org/10.1094/phyto-02-17-0051-r.
  14. Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022; 23(5):2690. https://doi.org/10.3390/ijms23052690
  15. Chen K, Gao C. TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genom. 2013; 40(6):271-79. https://doi.org/10.1016/j.jgg.2013.03.009
  16. Li D, Tang Y, Lin J, Cai W. Methods for genetic transformation of filamentous fungi. Microbial Cell Factories. 2017;16:1-3. https://doi.org/10.1186/s12934-017-0785-7
  17. El-Sayed AS, Abdel-Ghany SE, Ali GS. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol. 2017;101:3953-76. https://doi.org/10.1007/s00253-017-8263-z
  18. Gupta S, Bhatt P, Chaturvedi P. Determination and quantification of asiaticoside in endophytic fungus from Centellaasiatica (L.) Urban. World J Microbiol Biotechnol. 2018; 34:1-10. https://doi.org/10.1007/s11274-018-2493-9
  19. Deepika VB, Vohra M, Mishra S, Dorai K, Rai P, Satyamoorthy K, Murali TS. DNA demethylation overcomes attenuation of colchicine biosynthesis in an endophytic fungus Diaporthe. J Biotechnol. 2020; 323:33-41. https://doi.org/10.1016/j.jbiotec.2020.07.019.
  20. Sarsaiya S, Jain A, Fan X, Jia Q, Xu Q, Shu F, Zhou Q, Shi J, Chen J. New insights into detection of a dendrobine compound from a novel endophytic Trichodermalongibrachiatum strain and its toxicity against phytopathogenic bacteria. Front Microbiol. 2020; 11:337. https://doi.org/10.3389/fmicb.2020.00337
  21. Vigneshwari A, Rakk D, Németh A, Kocsubé S, Kiss N, Csupor D, Papp T, Škrbi? B, Vágvölgyi C, Szekeres A. Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS One. 2019;14(5):e0217060. https://doi.org/10.1371/journal.pone.0217060
  22. Xu XD, Liang WX, Yao L, Paek KY, Wang J, Gao WY. Production of ginsenoside by Chaetomium sp. and its effect on enhancing the contents of ginsenosides in Panax ginseng adventitious roots. Biochem Engin J. 2021;174:108100. https://doi.org/10.1016/j.bej.2021.108100
  23. Roat C, Saraf M. Isolation and characterization of t-resveratrol and ?-viniferin, a bioactive secondary metabolite of an endophytic fungus Aspergillus stellifer ab4, from Vitisvinifera. The J Microbiol BiotechnolFood Sci. 2020;19(4):708. https://doi.org/10.15414/jmbfs.2020.9.4.708-713
  24. Meshram V, Kapoor N, Dwibedi V, Srivastava A, Saxena S. Extracellular resveratrol producing endophytic fungus, Quambalaria cyanescens. S Afr J Bot. 2022;146:409-16. https://doi.org/10.1016/j.sajb.2021.11.026
  25. Cheng Y, Liu G, Li Z, Zhou Y, Gao N. Screening saikosaponin d (SSd)-producing endophytic fungi from Bupleurum scorzonerifolium Willd. World J Microbiol Biotechnol. 2022; 38(12):242. https://doi.org/10.1007/s11274-022-03434-x
  26. Gauchan DP, Vélëz H, Acharya A, Östman JR, Lundén K, Elfstrand M, García-Gil MR. Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus wallichiana Zucc., produces taxol and other bioactive metabolites. 3 Biotech. 2021;11:1-6. https://doi.org/10.1007/s13205-021-02693-z
  27. Parthasarathy R, Shanmuganathan R, Pugazhendhi A. Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Analy Biochem. 2020;593:113530. https://doi.org/10.1016/j.ab.2019.113530
  28. Ptak A, Mora?ska E, Warcho? M, Gurgul A, Skrzypek E, Dziurka M, Laurain-Mattar D, Spina R, Jaglarz A, Simlat M. Endophytic bacteria from in vitro culture of Leucojumaestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Scienti Rep. 2022;12(1):13700. https://doi.org/10.1038/s41598-022-17992-5
  29. Sagita R, Quax WJ, Haslinger K. Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front Bioengin Biotechno. 2021; 9:649906. https://doi.org/10.3389/fbioe.2021.649906
  30. Busato S, Gordon M, Chaudhari M, Jensen I, Akyol T, Andersen S, Williams C. Compositionality, sparsity, spurious heterogeneity, and other data-driven challenges for machine learning algorithms within plant microbiome studies. Curr Opin Plant Biol. 2023; 71:102326. https://doi.org/10.1016/j.pbi.2022.102326
  31. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019; 24(3):773-80. https://doi.org/10.1016/j.drudis.2018.11.014
  32. Helmy M, Elhalis H, Yan L, Chow Y, Selvarajoo K. Perspective: multi-omics and machine learning help unleash the alternative food potential of microalgae. Advances in Nutrition. 2022. https://doi.org/10.1016/j.advnut.2022.11.002
  33. Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host-associated microbiome. Microbiome. 2019; 7(1):1-7. https://doi.org/10.1186/s40168-019-0677-7
  34. Maggini V, Mengoni A, Bogani P, Firenzuoli F, Fani R. Promoting model systems of microbiota–medicinal plant interactions. Trends Plant Sci. 2020; 25(3):223-25. https://doi.org/10.1016/j.tplants.2019.12.013
  35. Shunxing G, Qiuying W. Character and action of good strain on stimulating seed germination of Gastrodiaelata. Mycosystema. 2001;20(3):408-12.
  36. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R. The endophytic fungus Piriformosporaindica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biolo Chem. 2005; 280(28):26241-47. https://doi.org/10.1074/jbc.M500447200
  37. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbio. 2009; 75(19):6176-86. https://doi.org/10.1128/AEM.01034-09
  38. Zhang J, Wang C, Guo S, Chen J, Xiao P. Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidacea). Acta Academiae Medicinae Sinicae. 1999;21(6):460-65.
  39. Chen XM, Guo SX. Effects of four species of endophytic fungi on the growth and polysaccharide and alkaloid contents of Dendrobium nobile. China J Chinese Materia Med. 2005;30(4):253-57.
  40. Abd_Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbaniasesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J of Biol Sci. 2015; 22(3):274-83. https://doi.org/10.1016/j.sjbs.2015.03.004
  41. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754-73. https://doi.org/10.3390/molecules170910754
  42. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecol. 2011;62:188-97. https://doi.org/10.1007/s00248-011-9883-y
  43. Elmagzob AA, Ibrahim MM, Zhang GF. Seasonal diversity of endophytic bacteria associated with Cinnamomumcamphora (L.) Presl. Diversity. 2019;11(7):112. https://doi.org/10.3390/d11070112
  44. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res in Microbiology. 2003;154(2):105-14. https://doi.org/10.1016/S0923-2508(03)00031-7
  45. Qin S, Miao Q, Feng WW, Wang Y, Zhu X, Xing K, Jiang JH. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol. 2015;93:47-55. https://doi.org/10.1016/j.apsoil.2015.04.004
  46. Borah A, Das R, Mazumdar R, Thakur D. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. J Appl Microbiol. 2019;127(3):825-44. https://doi.org/10.1111/jam.14356
  47. Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, Zhao Y, Yang H, Zhao X, Zhang L. An endophytic bacterium isolated from Panax ginseng CA Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett. 2015;11:132-38. https://doi.org/10.1016/j.phytol.2014.12.007
  48. Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol. 2015;46:977-89. https://doi.org/10.1590/S1517-838246420140024
  49. Qi Y, Li X, Wang J, Wang C, Zhao S. Efficacy of plant growth-promoting bacteria Streptomyces werraensis F3 for chemical modifications of diseased soil of ginseng. Biocontrol Science and Technology. 2021; 31(2):219-33. https://doi.org/10.1080/09583157.2020.1843598
  50. Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis. 2017;111:458-67. https://doi.org/10.1016/j.micpath.2017.09.036
  51. Abdallah ME, Haroun SA, Gomah AA, El-Naggar NE, Badr HH. Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch Phytopathol Pflanzenschutz 2013;46(15):1797-808. https://doi.org/10.1080/03235408.2013.778451
  52. Behie SW, Bonet B, Zacharia VM, McClung DJ, Traxler MF. Molecules to ecosystems: Actinomycete natural products in situ. Front in Microbiol. 2017;7:2149. https://doi.org/10.3389/fmicb.2016.02149
  53. Abd-Alla MH, El-Sayed ES, Rasmey AH. Indole-3-acetic acid (IAA) production by Streptomyces atrovirens isolated from rhizospheric soil in Egypt. J Biol Earth Sci. 2013; 3(2):182-93.
  54. Zhang C, Lu Y. Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration. 2021;23:100224. https://doi.org/10.1016/j.jii.2021.100224
  55. Duan L, Da Xu L. Business intelligence for enterprise systems: a survey. IEEE Transactions on Industrial Informatics. 2012;8(3):679-87. https://doi.org/10.1109/tii.2012.2188804
  56. Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Computer Sci. 2021;2(3):160. https://doi.org/10.1007/s42979-021-00592-x
  57. Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Li B, Mo J, Chen J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances. 2019;9(50):29293-99. https://doi.org/10.1039/c9ra04246f
  58. Hassan SE. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Advanc Res. 2017;8(6):687-95. https://doi.org/10.1016/j.jare.2017.09.001
  59. Vendan RT, Yu YJ, Lee SH, Rhee YH. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol. 2010;48:559-65. https://doi.org/10.1007/s12275-010-0082-1
  60. Yang HR, Yuan J, Liu LH, Zhang W, Chen F, Dai CC. Endophytic Pseudomonas fluorescens induced sesquiterpenoid accumulation mediated by gibberellic acid and jasmonic acid in Atractylodes macrocephala Koidz plantlets. Plant Cell, Tissue and Organ Culture. 2019; 138:445-57. https://doi.org/10.1007/s11240-019-01640-4
  61. Zhao L, Xu Y, Lai XH, Shan C, Deng Z, Ji Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Brazilian Journal of Microbiology. 2015;46:977-89.
  62. Fujioka T, Mori M, Kubota K, Oyama J, Yamaga E, Yashima Y, Katsuta L, Nomura K, Nara M, Oda G, Nakagawa T. The utility of deep learning in breast ultrasonic imaging: a review. Diagnostics. 2020;10(12):1055. https://doi.org/10.3390/diagnostics10121055
  63. Chen B. Wineinformatics: A New Data Science Application. Springer Nature; 2022 1-70p.
  64. Kujawa S, Niedba?a G. Artificial neural networks in agriculture. Agriculture. 2021;11(6):497. https://doi.org/10.3390/agriculture11060497
  65. Gupta A, Anpalagan A, Guan L, Khwaja AS. Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array. 2021;10:100057. https://doi.org/10.1016/j.array.2021.100057
  66. Agrawal A, Gans JS, Goldfarb A. Exploring the impact of artificial intelligence: Prediction versus judgment. Inform Econo Pol. 2019;47:1-6. https://doi.org/10.1016/j.infoecopol.2019.05.001
  67. Baclic O, Tunis M, Young K, Doan C, Swerdfeger H, Schonfeld J. Artificial intelligence in public health: Challenges and opportunities for public health made possible by advances in natural language processing. Can Communi Dis Rep. 2020;46(6):161. https://doi.org/10.14745%2Fccdr.v46i06a02
  68. Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H. CNN variants for computer vision: History, architecture, application, challenges, and future scope. Electronics. 2021;10(20):2470. https://doi.org/10.3390/electronics10202470
  69. Li Z, Chen Y, Chen H, Zhang X, Liu Y. Predicting the biosynthetic potential of endophytic fungi isolated from Panax ginseng with artificial intelligence. BMC Bioinformatics. 2021;2(1):1-14.
  70. Zameer R, Tariq S, Noreen S, Sadaqat M, Azeem F. Role of Transcriptomics and Artificial Intelligence Approaches for the Selection of Bioactive Compounds. Drug Design Using Machine Learning. 2022; 10:283-317. https://doi.org/10.1002/9781394167258.ch10
  71. Said FM, Gan JY, Sulaiman J. Correlation between response surface methodology and artificial neural network in the prediction of bioactive compounds of unripe Musa acuminata peel. Engineering Sci Technol. 2020; 23(4):781-77. https://doi.org/10.1016/j.jestch.2019.12.005
  72. Tiwari P, Bae H. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022; 10(2), p.360. https://doi.org/10.3390/microorganisms10020360
  73. Aghdam SA, Brown AM. Deep learning approaches for natural product discovery from plant endophytic microbiomes. Environ Microbiome. 2021; 16(1):1-20. https://doi.org/10.1186/s40793-021-00375-0
  74. Li G, Lin P, Wang K, Gu CC, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends in Cancer. 2022; 8(1):65-80. https://doi.org/10.1016/j.trecan.2021.10.002
  75. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019; 119(18):10520-94. https://doi.org/10.1021/acs.chemrev.8b00728
  76. Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules. 2023; 13(7):1038. https://doi.org/10.3390/biom13071038
  77. Chen Y, Chen H, Zhang X, Liu Y. Optimization of bioactive compounds production by endophytic fungus Fusarium solani using artificial intelligence. J Biotechno. 2020; 310:57-65.
  78. Li H, Dou M, Wang X, Guo N, Kou P, Jiao J, Fu Y. Optimization of cellulase production by a novel endophytic fungus Penicillium oxalicum R4 isolated from Taxus cuspidata. Sustainability. 2021;13(11):6006. https://doi.org/10.3390/su13116006
  79. Sahoo M, Dey S, Sahoo S, Das A, Ray A, Nayak S, Subudhi E. MLP (multi-layer perceptron) and RBF (radial basis function) neural network approach for estimating and optimizing 6-gingerol content in Zingiber officinale Rosc. in different agro-climatic conditions. Ind Crop Pro. 2023; 198:116658. https://doi.org/10.1016/j.indcrop.2023.116658
  80. Zhang C, Wang Y, Zhang X, Huang H, He X. Identification of genes involved in the interaction between Colletotrichum tofieldiae and Camellia sinensis using machine learning algorithms. Genomics. 2020;112(6):4197-04.
  81. YoosefzadehNajafabadi M, Hesami M, Eskandari M. Machine learning-assisted approaches in modernized plant breeding programs. Genes. 2023;14(4):777. https://doi.org/10.3390/genes14040777
  82. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021;26(1):80. https://doi.org/10.1016%2Fj.drudis.2020.10.010
  83. Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci. 2022;13(6):1526-46. https://doi.org/10.1039/d1sc04471k
  84. Askin S, Burkhalter D, Calado G, El Dakrouni S. Artificial Intelligence Applied to clinical trials: opportunities and challenges. Health and Techno. 2023;13(2):203-13. https://doi.org/10.1007/s12553-023-00738-2
  85. Shankar A, Sharma KK. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl Microbiol Biotechno. 2022;106(9-10):3465-88. https://doi.org/10.1007/s00253-022-11945-8

Downloads

Download data is not yet available.