Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Early Access

The effect of phytohormones on the flowering of plants

DOI
https://doi.org/10.14719/pst.2558
Submitted
31 March 2023
Published
18-09-2023
Versions

Abstract

During the development of angiosperms, one of the most critical stages of plants is the transition from vegetative to reproductive stage, and successfully producing seeds is necessary. Plants have developed a complex signaling pathway to recognize and combine endogenous and environmental signals. Plant growth regulators (PGRs) play a role in regulating flower growth on shoots. Physiological and biochemical processes work together to differentiate and produce flower buds. The impact of PGRs on floral bud differentiation has been the subject of several publications in recent years. In addition, the dynamic variations in gibberellin (GA), auxin, and cytokinin levels in buds and the hormonal-related signatures in gene regulatory networks indicate a crucial function for these hormones during floral bud development in plants. Especially the flowering hormone GA has a key role in regulating the activities related to flowering genes as well as controlling the activity of the DELLA protein. Abscisic acid (ABA) and ethylene (ET) have an inhibitory role in flowering but in some cases stimulate flowering depending on environmental conditions. This study aims to understand the regulation of phytohormones on flowering of plants and its effects on plant development during the flowering stage.

References

  1. Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: an epigenetic point of view. Journal of plant physiology. 2017; 214:16-27. https://doi.org/10.1016/j.jplph.2017.03.018
  2. Vu NH, Anh PH, Nhut DT. The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv.“First Prize”. Plant Cell, Tissue and Organ Culture. 2006; 87(3):315-320. DOI:10.1007/s11240-006-9089-z
  3. Tsai SS, Chang YCA. Plant maturity affects flowering ability and flower quality in phalaenopsis, focusing on their relationship to carbon-to-nitrogen ratio. HortScience. 2022; 57(2):191-196. https://doi.org/10.21273/HORTSCI16273-21
  4. Benlloch R, Berbel A, Serrano-Mislata A, Madueño F. Floral initiation and inflorescence architecture: a comparative view. Annals of botany. 2007; 100(3): 659-676. https://doi.org/10.1093/aob/mcm146
  5. Park SJ, Jiang K, Schatz MC, Lippman ZB. Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences. 2012;109(2):639-644. https://doi.org/10.1073/pnas.1114963109
  6. Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology. 2020;62(1):118-131. https://doi.org/10.1111/jipb.12892
  7. Merelo P, González-Cuadra I, Ferrandiz C. A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. Current Biology. 2022;32(4). https://doi.org/10.1016/j.cub.2021.11.069
  8. Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nature communications. 2014;5(1). https://doi.org/10.1038/ncomms5601
  9. Walker CH, Ware A, Å imura J, Ljung K, Wilson Z, Bennett T. Cytokinin signaling regulates two-stage inflorescence arrest in Arabidopsis. Plant Physiology. 2023;191(1):479-495. https://doi.org/10.1093/plphys/kiac514
  10. Tsuji H, Taoka KI. Florigen signaling. In The enzymes . Academic Press. 2014. https://doi.org/10.1016/B978-0-12-801922-1.00005-1
  11. Matsoukas IG.. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Frontiers in genetics. 2014. https://doi.org/10.3389/fgene.2014.00218
  12. Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008; 59:225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  13. Teotia S, Tang G. . To bloom or not to bloom: role of microRNAs in plant flowering. Molecular plant.2015;8(3):359-377. https://doi.org/10.1016/j.molp.2014.12.018
  14. Yan J, Liao X, He R, Zhong M, Feng P, Li X, Zhao X. Ectopic expression of GA 2-oxidase 6 from rapeseed (Brassica napus L.) causes dwarfism, late flowering and enhanced chlorophyll accumulation in Arabidopsis thaliana. Plant Physiology and Biochemistry. 2017;111: 10-19. https://doi.org/10.1016/j.plaphy.2016.11.008
  15. Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Han M. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’apple (Malus domestica Borkh.). Plant Physiology and Biochemistry. 2016;107:178-186. https://doi.org/10.1016/j.plaphy.2016.06.005
  16. Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Wang X. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca× V. vinifera) cv. Kyoho flowers. BMC genomics. 2015;16(1):1-16.
  17. Guan YR, Xue JQ, Xue YQ, Yang RW, Wang SL, Zhang XX. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone-and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa). Journal of Integrative Agriculture; 2019;18(6):1295-1311. https://doi.org/10.1016/S2095-3119(18)62131-8
  18. Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2. Plant physiology. 2017;175(3):1395-1406. https://doi.org/10.1104/pp.17.00282
  19. Aliyu OM, Adeigbe OO, Awopetu JA. Foliar application of the exogenous plant hormones at pre-blooming stage improves flowering and fruiting in cashew (Anacardium occidentale L.). Journal of crop science and biotechnology. 2011;14:143-150.
  20. Hisamatsu T, King RW. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. Journal of experimental botany. 2008;59(14):3821-3829. https://doi.org/10.1093/jxb/ern232
  21. Chen Y, Zhang L, Zhang H, Chen L, Yu D. ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis. Journal of Integrative Plant Biology. 2021; 63(10):1712-1723. https://doi.org/10.1111/jipb.13144
  22. Kieber JJ, Schaller G E. Cytokinins. The Arabidopsis Book/American Society of Plant Biologists. 2014;12. https://doi.org/10.1199/tab.0168
  23. Corbesier L, Prinsen E, Jacqmard, A., Lejeune, P., Van Onckelen, H., Périlleux, C., & Bernier, G. . Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. Journal of experimental botany. 2003; 54(392): 2511-2517. https://doi.org/10.1093/jxb/erg276
  24. Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annual review of plant biology. 2012; 63: 353-380. https://doi.org/10.1146/annurev-arplant-042811-105503
  25. Jacqmard A, Gadisseur I, Bernier G. Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Annals of botany. 2003; 91(5): 571-576. https://doi.org/10.1093/aob/mcg053
  26. Karami O, Rahimi A. The end of flowering: interactions between cytokinin and regulatory genes. Trends in Plant Science. 2022. https://doi.org/10.1016/j.tplants.2022.05.011
  27. Stern R A, Naor A, Bar N, Gazit S, Bravdo B A. Xylem-sap zeatin-riboside and dihydrozeatin-riboside levels in relation to plant and soil water status and flowering in ‘Mauritius’ lychee. Scientia horticulturae. 2003;98(3): 285-291. https://doi.org/10.1016/S0304-4238(02)00229-7
  28. Yang W, Cortijo S, Korsbo N, Roszak P, Schiessl K, Gurzadyan A, Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science. 2021;371(6536):1350-1355. https://doi.org: 10.1126/science.abe2305
  29. Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell. 2011; 23(1), 69-80. https://doi.org/10.1105/tpc.110.079079
  30. Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annual review of genetics. 2009;43. https://doi.org/10.1146/annurev-genet-102108-134148
  31. Wani TA, Lattoo SK. Auxin response factor (GaARF) cloning and expression in relation to reproductive maturation in Grewia asiatica L. Plant Gene. 2017; 12. https://doi.org/10.1016/j.plgene.2017.10.001
  32. Dinesh DC, Villalobos LIAC, Abel, S. Structural biology of nuclear auxin action. Trends in Plant Science. 2016; 21(4): 302-316. https://doi.org/10.1016/j.tplants.2015.10.019
  33. Tanaka H, Dhonukshe P, Brewer PB, Friml J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cellular and Molecular Life Sciences CMLS. 2006;63:2738-2754.
  34. Goldental-Cohen S, Israeli A, Ori N, Yasuor H. Auxin response dynamics during wild-type and entire flower development in tomato. Plant and Cell Physiology. 2017; 58(10):1661-1672. https://doi.org/10.1093/pcp/pcx102
  35. Damodharan S, Corem S, Gupta SK, Arazi T. Tuning of Sl ARF 10A dosage by sly?miR160a is critical for auxin?mediated compound leaf and flower development. The Plant Journal. 2018; 96(4):855-868. https://doi.org/10.1111/tpj.14073
  36. Goetz M, Rabinovich M, Smith HM. The role of auxin and sugar signaling in dominance inhibition of inflorescence growth by fruit load. Plant Physiology. 2021;187(3):1189-1201.
  37. Razem FA, El-Kereamy A, Abrams SR, Hill RD. The RNA-binding protein FCA is an abscisic acid receptor. Nature. 2006;439(7074):290-294.
  38. Ionescu IA, Møller BL, Sánchez-Pérez R. Chemical control of flowering time. Journal of Experimental Botany. 2017;68(3):369-382. https://doi.org/10.1093/jxb/erw427
  39. Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Xie Q. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of experimental botany. 2016; 67(1):195-205. https://doi.org/10.1093/jxb/erv459
  40. Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Xie Q. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of experimental botany. 2016; 67(1): 195-205. https://doi.org/10.1093/jxb/erv459
  41. Izawa T. What is going on with the hormonal control of flowering in plants?. The Plant Journal. 2021;105(2):431-445. https://doi.org/10.1111/tpj.15036
  42. Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current opinion in plant biology. 2011;14(3): 240-245. https://doi.org/10.1016/j.pbi.2011.04.006
  43. Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant physiology. 2013;162(3):1706-1719. https://doi.org/10.1104/pp.113.217729
  44. Frankowski K, Wilmowicz E, Ku?ko A, K?sy J, ?wie?awska B, Kopcewicz J. Ethylene, auxin, and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil. Biologia plantarum. 2014; 58. DOI: 10.1007/s10535-014-0401-1
  45. Wang J, Li Z, Lei M, Fu Y, Zhao J, Ao M, Xu L. Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple. Scientific reports. 2017; 7(1):17167.
  46. Frankowski K, Wilmowicz E, Ku?ko A, K?sy J, ?wie?awska B, Kopcewicz J. Ethylene, auxin, and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil. Biologia plantarum. 2014;58:305-310.
  47. Wang J, Li Z, Lei M, Fu Y, Zhao J, Ao M, Xu L. Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple. Scientific reports. 2017;7(1):1-11. https://doi:10.1038/s41598-017-17460-5
  48. Reid MS, Wu M J. Ethylene in flower development and senescence. In: The plant hormone ethylene. CRC Press. 2018 (pp. 215-234).
  49. Ma N, Tan H, Liu X, Xue J, Li Y, Gao J. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of experimental botany. 2006;57(11): 2763-2773. https://doi.org/10.1093/jxb/erl033
  50. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences. 2007;104(15):6484-6489. https://doi.org/10.1073/pnas.061071710
  51. Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, Née G, Coupland G. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP. Cell reports. 2020;31(9). https://doi.org/10.1016/j.celrep.2020.107717
  52. Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants. Current Opinion in Plant Biology. 2016;33. https://doi.org/10.1016/j.pbi.2016.06.008
  53. Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant and Cell Physiology. 2008;49(11):1645-1658. https://doi.org/10.1093/pcp/pcn154
  54. Jung JH, Lee HJ, Ryu JY. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Molecular plant. 2016; 9(12): 1647-1659. https://doi.org/10.1016/j.molp.2016.10.014
  55. Efroni I, Eshed Y, Lifschitz E. Morphogenesis of simple and compound leaves: a critical review. The Plant Cell. 2010;22(4):1019-1032. https://doi.org/10.1105/tpc.109.073601
  56. Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen–a systemic mechanism for coordinating growth and termination in flowering plants. Frontiers in Plant Science. 2014;5,465. https://doi.org/10.3389/fpls.2014.00465

Downloads

Download data is not yet available.