Skip to main navigation menu Skip to main content Skip to site footer

Special issue on Mini Reviews

Early Access

Target genes utilized for drought tolerance enhancement in maize

DOI
https://doi.org/10.14719/pst.2561
Submitted
31 March 2023
Published
20-10-2023
Versions

Abstract

Among the most widely grown cereal crops is maize, which is a staple food for millions of people worldwide. It is primarily used for human consumption in various forms, animal feed, and industrial applications. In many countries like Mexico, Africa, and South America, it is the main source of calories in their daily diet, making it crucial for food security. Many nations worldwide are more at risk of drought as global warming continues to accelerate. One of the major hurdles to food production in the twenty-first century and a serious threat to our present and future food security is a water crisis. Crop failure due to water scarcity can put millions of lives at risk. Along with traditional breeding, transgenic approaches are an essential tool in modern plant breeding. They allow the introduction of beneficial genes from other organisms or within the same organism to improve plant characteristics. This review focuses on specific genes that are stably expressed and tested for drought tolerance in maize. Several genes have been identified as potential targets for improving drought tolerance in maize. Although mechanisms of target genes overlap to some extent, we attempted to divide the selected research articles according to the mechanism of the targeted gene into categories and reviewed them.

References

  1. FAO. 2018. The impact of disasters and crises on agriculture and food security: 2017. Rome. http://www.fao.org/3/I8656EN/i8656en.pdf
  2. Chaves MM. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany. 2004;55(407):2365–84. https://doi.org/10.1093/jxb/erh269
  3. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SM. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development. 2009;29(1):185–212. https://doi.org/10.1051/agro:2008021
  4. Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, et al. Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports. 2020;10(1). https://doi.org/10.1038/s41598-020-59689-7.
  5. Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, et al. Phytohormones trigger drought tolerance in crop plants: Outlook and future perspectives. Frontiers in Plant Science. 2022; 12. doi:10.3389/fpls.2021.799318
  6. Daszkowska-Golec A, Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LS. Drought Stress Tolerance in Plants, Vol 2 Volume 2. Springer; Berlin/Heidelberg, Germany: 2016. pp. 123–151.
  7. Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (). Plants physio-biochemical and Phyto-hormonal responses to alleviate the adverse effects of Drought stress: A comprehensive review. Plants. 2022; 11(13), 1620. https://doi.org/10.3390/plants11131620
  8. Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, et al. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant Cell Environ. 2013;36(5):1037-55. https://doi.org/10.1111/pce.12040
  9. Xiang Y, Sun X, Gao S, Qin F, Dai M. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Mol Plant. 2017;10(3):456-469. https://doi.org/10.1016/j.molp.2016.10.003
  10. Cao L, Lu X, Wang G, Zhang Q, Zhang X, Fan Z, et al. Maize ZmbZIP33 Is Involved in Drought Resistance and Recovery Ability Through an Abscisic acid-dependent Signaling Pathway. Front Plant Sci. 2021;12:629903. https://doi.org/10.3389/fpls.2021.629903
  11. Arraes FB, Beneventi MA, Lisei de Sa ME, Paixao JF, Albuquerque EV, Marin SR, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biology. 2015;15(1). https://doi.org/10.1186%2Fs12870-015-0597-z
  12. Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, et al. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize. Plant Physiol. 2015;169(1):266-82. https://doi.org/10.1104/pp.15.00780
  13. Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, et al. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol. 2022;275:153763. https://doi.org/10.1016/j.jplph.2022.153763
  14. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP.. Response of plants to water stress. Frontiers in Plant Science 2014; 5. https://doi.org/10.3389/fpls.2014.00086
  15. Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot. 2004;55(399):1013-19. https://doi.org/10.1093/jxb/erh129
  16. Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet. 2016;48(10):1233-41. https://doi.org/10.1038/ng.3636
  17. Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications. 2015;6(1). https://doi.org/10.1038/ncomms9326
  18. Liu S, Liu X, Zhang X, Chang S, Ma C, Qin F. Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize. Genes (Basel). 2022;14(1):8. https://doi.org/10.3390/genes14010008
  19. Kavi Kishor PB, Ganie SA, Wani SH, Guddimalli R, Karumanchi AR, Edupuganti S, et al. Nuclear factor (NF-y): Developmental and stress-responsive roles in the plant lineage. Journal of Plant Growth Regulation. 2022; 42(5), 2711–2735. https://doi.org/10.1007/s00344-022-10739-6
  20. Wang B, Li Z, Ran Q, Li P, Peng Z, Zhang J. ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants. Front Plant Sci. 2018;9:709. https://doi.org/10.3389/fpls.2018.00709
  21. Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015; 33(8), 862–869. https://doi.org/10.1038/nbt.3277
  22. Oszvald M, Primavesi LF, Griffiths CA, Cohn J, Basu SS, Nuccio ML et al. Trehalose 6-Phosphate Regulates Photosynthesis and Assimilate Partitioning in Reproductive Tissue. Plant Physiol. 2018;176(4):2623-2638. https://doi.org/10.1104/pp.17.01673
  23. Hatfield JL, Dold C. Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science. 2019;10. https://doi.org/10.3389%2Ffpls.2019.00103
  24. Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, et al. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie. 2002;84(11):1127-35. https://doi.org/10.1016/s0300-9084(02)00024-x
  25. Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta. 2008;227(5):1127-40. https://doi.org/10.1007/s00425-007-0686-9
  26. Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun. 2015;6:8326. https://doi.org/10.1038/ncomms9326
  27. Li H, Han X, Liu X, Zhou M, Ren W, Zhao B, et al.. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics. 2019 Oct 15;20(1):737. https://doi.org/10.1186/s12864-019-6143-x
  28. Xu J, You X, Leng Y, Li Y, Lu Z, Huang Y, et al. Identification and alternative splicing profile of the raffinose synthase gene in grass species. International Journal of Molecular Sciences. 2023; 24(13), 11120. https://doi.org/10.3390/ijms241311120
  29. Liu Y, Li T, Zhang C, Zhang W, Deng N, Dirk LMA, et al. Raffinose positively regulates maize drought tolerance by reducing leaf transpiration. Plant J. 2023 Jan 26. https://doi.org/10.1111/tpj.16116
  30. Pirasteh?Anosheh H, Saed?Moucheshi A, Pakniyat H, Pessarakli M. Stomatal responses to drought stress. Water Stress and Crop Plants. 2016; 24–40. doi:10.1002/9781119054450.ch3
  31. Xiong L, Ishitani M, Lee H, Zhu JK. The arabidopsis Los5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress– and osmotic stress–responsive gene expression. The Plant Cell. 2001; 13(9), 2063–2083. doi:10.1105/tpc.010101
  32. Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, et al.. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One. 2013;8(1):e52126. https://doi.org/10.1371/journal.pone.0052126
  33. Guo Y, Shi Y, Wang Y, Liu F, Li Z, Qi J, et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol. 2023 Mar;237(5):1728-1744. https://doi.org/10.1111/nph.18647
  34. Wasaya A, Zhang X, Fang Q, Yan Z. Root phenotyping for drought tolerance: A Review. Agronomy. 2018;8(11):241. https://doi.org/10.3390/agronomy8110241
  35. Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J. 2018 Jan;16(1):86-99. https://doi.org/10.1111/pbi.12751
  36. Li Z, Liu C, Zhang Y, Wang B, Ran Q, Zhang J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot. 2019 Oct 15;70(19):5471-5486. https://doi.org/10.1093/jxb/erz307
  37. Zhang X, Mi Y, Mao H, Liu S, Chen L, Qin F. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol J. 2020 May;18(5):1271-1283. https://doi.org/10.1111/pbi.13290

Downloads

Download data is not yet available.