Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Molecular authentication of some rare Iris (Iridaceae) species from Uzbekistan

DOI
https://doi.org/10.14719/pst.2596
Submitted
9 April 2023
Published
23-06-2023
Versions

Abstract

The determination of nucleotide sequences in DNA, sequencing of chloroplast genomes techniques, based on the use of combinations a significant number genetic markers, as well as the nuclear genome are widely use for inventory of rare plant species, ecological monitoring and species diversity assessment. The results of our molecular analysis are used to examine the taxonomic identity and phylogenetic relationship of the studied Iris species collected in Uzbekistan. The genotyping of three-four functional loci of nrDNA and cpDNA was performed for efficient species identification and confident results. The nuclear ITS gene sequences and chloroplast trnL-trnF, rbcL, matK gene sequences were obtained from 10 Iris species and have proven to be useful as molecular markers for species identification. Sequences of cpDNA regions, have been used to assess interspecific relationships of Iris. Hierarchical clustering were constructed using 13 consensus matK gene sequences. In this study, we consider the possibility of successful application the DNA barcoding as a tool for assessment of wild Iris species diversity in Uzbekistan.

References

  1. Tojibaev K, Karimov F. Endemic monocotyledonous geophytes of Fergana valley flora. J Flora of Asian Russia. 2012;1(9):55-59 (In Russian).
  2. Tojibaev K, Karimov F, Oh Byoung-Un, Oh Seung Hwan, Jang Chang-gee. A checklist of the geophytes of Fergana valley, Middle Asia -monocotyledonous plant and biogeographical analysis. Journal of Asia-Paci?c Biodiversity. 2018;11(3):431-41. https://doi.org/10.1016/j.japb.2018.06.003
  3. Tojibaev K Sh. Monitoring of the relic endemics of Uzbekistan’s flora. Czech J Genet Plant Breed. 2010;46:45-46. doi.org/10.17221/698-cjgpb
  4. Tojibaev K, Beshko N, Karimov F, Batoshov A, Turginov O, Azimova D. The data base of the flora of Uzbekistan. Journal of Arid Land Studies. 2014;24(1):157-60.
  5. The Red Data Book of Uzbekistan. Tashkent. 2019;360.
  6. Kress J, Wurdack K, Zimmer E, Lee W, Janzen D. Use of DNA barcodes to identify flowering plants. PNAS. 2005;102(23):8369¬8374. doi.org/10.1073/pnas.0503123102
  7. Hebert P, Cywinska A, Ball Sh, deWaard J. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313-21. doi:10.1098/rspb.2002.2218.
  8. The Catalogue of Life Partnership. APG IV: Angiosperm phylogeny group classification for the orders and families of flowering plants; 2017. Available at https://doi.org/10.15468/fzuaam
  9. Xu Z, Chang L. Iridaceae. In: Identification and control of common weeds: Springer, Singapore. 2017; 3:905-08. https://doi.org/10.1007/978-981-10-5403-7_37
  10. Wilson Carol A. Subgeneric classification in Iris re-examined using chloroplast sequence data. Taxon. 2011;60(1):27-35. DOI:10.1002/tax.601004
  11. Sennikov AN, Khassanov F, Ortikov E, Kurbonaliyeva M, Tojibaev K Sh. The genus Iris L. s. l. (Iridaceae) in the mountains of Central Asia biodiversity hotspot. Plant Diversity of Central Asia. 2023;2(1):1-104. http://doi.org/10.54981/PDCA/vol2_iss1/a1
  12. Sennikov AN, Khassanov FO, Lazkov GA. The nomenclatural history of Iris orchioides (Iridaceae). Memoranda Soc. Fauna Flora Fennica. 2022;98:1-8.
  13. Sennikov AN, Khassanov FO, Pulatov SO. Iris bucharica (Iridaceae): A century of confusion is resolved with the description of I. chrysopetala, a new species from Southern Central Asia. Memoranda - Societatis pro Fauna et Flora Fennica. 2022;98:9-20. https://journal.fi/msff/article/view/114211
  14. Khatib S, Faraloni C, Bouissane L. Exploring the use of Iris species: Antioxidant properties, phytochemistry, medicinal and industrial applications. Antioxidants. 2022;11:526. doi.org/ 10.3390/antiox11030526
  15. Amin HIM, Hussain FHS, Najmaldin SK, Thu ZM, Ibrahim MF, Gilardoni G, Vidari G. Phytochemistry and biological activities of Iris species growing in Iraqi Kurdistan and phenolic constituents of the traditional plant Iris postii. Molecules. 2021;26(2):264. doi:10.3390/molecules26020264
  16. Tojibaev K, Beshko N, Popov V. Botanical geography of Uzbekistan. Journal of Botany (Russian). 2016;101:1105-32. doi:10.1134/S000681361610001X
  17. Kress WJ, Erickson DL. DNA barcodes: methods and protocols. Methods in Molecular Biology, New York: Humana Press. 2012;858:3-8. doi: 10.1007/978-1-61779-591-6_1
  18. Wilson CA, Padiernos J, Sapir Y. The royal irises (Iris subg. Iris sect. Oncocyclus): Plastid and low-copy nuclear data contribute to an understanding of their phylogenetic relationship. Taxon. 2016;65(1):35-46. DOI:10.12705/651.3
  19. Kang YJ, Kim S, Lee J, Won H, Nam GH, Kwak M. Identification of plastid genomic regions inferring species identity from de novo plastid genome assembly of 14 Korean-native Iris species (Iridaceae). PLoS ONE. 2020;15(10):1-12. doi.org/10.1371/journal.pone.0241178
  20. Wilson Carol A. Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Molecular Phylogenetics and Evolution. 2004;33(2):402-12. DOI:10.1016/j.ympev.2004.06.013
  21. Jiang Yu L, Huang Z, Liao JQ, Song Hui-Xing et al. Phylogenetic analysis of Iris L. from China on chloroplast trnL-F sequences. Biologia. 2018;73(5):459-66. https://doi.org/10.2478/s11756-018-0063-0
  22. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 1990;18(1):315-22. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  23. Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLOS ONE. 2007;2(6):e508DOI 10.1371/journal.pone.0000508.
  24. Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB and matK DNA sequences. American Journal of Botany. 2002;89(1):132-44. https://doi.org/10.3732/ajb.89.1.132
  25. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology. 1991;17(5):1105-09. https://doi.org/10.1007/BF00037152
  26. Nikitina EV, Beshko N Yu. Assessment of plant species diversity (Lamiaceae Lindle.) in Uzbekistan based on DNA barcoding. IOP Conf. Series: Earth and Environmental Science. 1068 (2022) 012042. doi:10.1088/1755-1315/1068/1/012042
  27. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA). 2004; 101(30):11030-035. https://doi.org/10.1073/pnas.04042061001
  28. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9(8):772. DOI:10.1038/nmeth.2109
  29. Iris Tourn ex L. in Royal Botanic Gardens, Kew (2021). The World Checklist of Vascular Plants (WCVP). Checklist dataset https://wcvp.science.kew.org/ on 2022-06-23
  30. Guo J, Wilson CA. Molecular Phylogeny of Crested Iris Based on Five Plastid Markers (Iridaceae). Systematic Botany. 2013; 38(4):987-95. DOI:10.1600/036364413X674724
  31. Kukula-Koch W, Sieniawska E, Widelski J, Urjin O, G?owniak P, Skalicka-Wo?niak K. Major secondary metabolites of Iris spp. Phytochem. Rev. 2015;14:51-80. doi:10.1007/s11101-013-9333-1
  32. Khassanov FO, Rakhimova N. Taxonomic revision of the genus Iris L. (Iridaceae Juss.) for the flora of Central Asia. Stapfia. 2012;97:174-79.
  33. Wilson CA. Patterns in evolution in characters that define Iris subgenera and sections. Aliso: A Journal of Systematic and Floristic Botany. 2006;22(1):425-33. DOI:10.5642/ALISO.20062201.34
  34. Wilson CA. Sectional relationships in the Eurasian bearded Iris (subgen. Iris) based on phylogenetic analyses of sequence data. Systematic Botany. 2017;42(3):392-401. DOI 10.1600/036364417X695970
  35. Crespo MB, Martinez-Azorin M, Mavrodiev EV. Notes on taxonomy and nomenclature of juno irises (Juno, Iridaceae). Phytotaxa. 2018;376(5):185-200. https://doi.org/10.11646/phytotaxa.376.5.1
  36. Rodionenko GI. The genus Iris L.: Questions of morphology, biology, evolution and systematics. London: The British Iris Society. [English translation]; 1987.
  37. Mathew B. The Iris. BT Batsford Ltd., London. 1981; 215.
  38. Mavrodiev EV, Martínez-Azorín M, Dranishnikov P, Crespo MB. At least 23 genera instead of one: The case of Iris L. s.l. (Iridaceae). PLoS One. 2014;9(8):1-8. https://doi.org/10.1371/journal.pone.0106459
  39. Ikinci IN, Hall T, Lledo MD, Clarkson JJ, Tillie N, Seisum A, Saito T, Harley M, Chase MW. Molecular phylogenetics of the juno irises, Iris subgenus Scorpiris (Iridaceae), based on six plastid markers. Botanical Journal of the Linnean Society. 2011;167:281-300. doi:10.1111/j.1095-8339.2011.01176.x
  40. Boltenkov EV, Güner A, Kuznetsov AA. Typification and taxonomic remarks on names of Iris (Iridaceae) associated with the Turkish flora. Plants (Basel). 2021;10(7):1486. doi:10.3390/plants10071486
  41. Wilson Carol A. Phylogenetic relationships among the recognized series in Iris section Limniris. Systematic Botany. 2009;34(2):277-84. DOI:10.1600/036364409788606316
  42. Tojibaev K, Turginov O. A new species and a new combination of Iris subgenus Scorpiris (Iridaceae) from Central Asia (Hissar Range, Pamir-Alai). Phytotaxa. 2014;158(3):224-28. DOI:10.11646/phytotaxa.158.3.2

Downloads

Download data is not yet available.