Study of natural antagonists of potato cyst nematode “Globodera sp.” in west Algeria: Nematological analysis

Authors

  • Ahlem Yasmina Boubkar Department Agronomy, Laboratory of Research on Biological Systems and Geomantic (L.R.S.B.G), University of Mustapha Stumbouli, P.O. Box 305, 29000 Mascara, Algeria https://orcid.org/0009-0008-6906-843X
  • Kada Righi Department Agronomy, Laboratory of Research on Biological Systems and Geomantic (L.R.S.B.G), University of Mustapha Stumbouli, P.O. Box 305, 29000 Mascara, Algeria https://orcid.org/0000-0003-0091-792X
  • Slimane Mokrani Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria https://orcid.org/0000-0003-0664-9241

DOI:

https://doi.org/10.14719/pst.2986

Keywords:

Globodera sp, Solanum tuberosum, biological control, bacteria, fungi, Maldi-TOF-MS

Abstract

Potato (Solanum tuberosum) is among the most dominant crops in Algeria. However, it is confronted by many pests like potato cyst nematodes (PCN) Globodera sp. It is among the most important pests that can cause enormous damage and loss of yield each year. This study highlighted morpho-identification and PCN density in 4 different regions of west Algeria, including Tiaret, Saida, Mascara and El Bayadh as well as its association with some microorganisms (bacteria identified by Maldi-TOF-MS method) and fungi (identified by macroscopic and microscopic examinations) that might have biological control activity on PCN. Identification of 8 bacterial isolates by MALDI-TOF-MS technique revealed that 50 % of isolated bacteria belong to the genus Bacillus; B. megaterium for the isolates B15 with a score of 1.994 and B1 with a score of 1.882 and B. cereus for the isolate B20 the score value is 1.892 and 50 % to the genus Pseudomonas with different score values; P1 for a score of 2.294 identify as P. fulva P4 showed a score value of 1.974 to P. corrugata, P2 with a score of 2.148 P. stutzeri and P3 with a score of 2.009, P. kilonensis. Macroscopic and microscopic examination of fungal flora revealed high diversity: 7 orders were isolated, among which the most frequent were Trichocomaceae (30 %) and Pleosporaceae (22 %), while the less frequent were Pythiaceae (5 %) and Davidiellaceae (5 %). The genus Aspergillus recorded a frequency of 59.38 % and the genus Penicillium sp. was detected in 46.88 % of the cyst populations studied.

Downloads

Download data is not yet available.

References

Changchui He. Workshop to commemorate the international year of the potato 2008. Bangkok, Thailand: Food and Agriculture Organization (FAO).

Salar T, Kovrova I, Lombardi L, Lavagne O. Agricultural production statistics 2000–2021. Rome: Food and Agriculture Organization (FAO). 2020. https://www.fao.org/3/cc3751en/cc3751en.pdf

Rousselle P, Crosnier JC, Robert Y. La pomme de terre: Production, amélioration, ennemis et maladies, utilisations. Inra, 1st ed. 1996;1-640.

Stone AR, Roberts PA. Host ranges of Globodera species within Solanum subgenus Leptostemonum. Nematologica. 1981;27(2):172-89. http://dx.doi.org/10.1163/187529281x00232

Masler EP, Perry RN. Hatch survival and sensory perception: An overview. In: Parfitt C, Cooper W, Hemming D, Lainsbury A, Lee J, Stubbs R, Thompson A, Pritchard L, Taylor V, editors. Cyst Nematodes. Wallingford UK: CAB International. 2018;p.44-73. http://dx.doi.org/10.1079/9781786390837.0044

Picard D, Plantard O, Scurrah M, Mugniéry D. Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Mol Ecol. 2004;13(10):2899-908. http://dx.doi.org/10.1111/j.1365-294x.2004.02275.x

Turner SJ, Subbotin SA. Cyst nematodes. An overview. In: Plant Nematology. Wallingford UK: CABI. 2006; p.91-122. http://dx.doi.org/10.1079/9781780641515.0109

Den Nijs L, Karssen G, Anthoine G, Kox L, Karssen G, van den Vossenberg B, den Nijs L. Globodera rostochiensis and Globodera pallida. European and Mediterranean Plant Protection Organization Bulletin (EPPO). 2017;47(2):174-97. http://dx.doi.org/10.1111/epp.12391

Abd-Elgawad M. Optimizing safe approaches to manage plant-parasitic nematodes. Plants. 2021;10(9):1-20. http://dx.doi.org/10.3390/plants10091911

Righi K. Bioécologie des nématodes à kystes" heterodera" inféodés aux cultures céréalières et aux graminées sauvages dans l'Ouest Algérien [Doctoral dissertation], Mascara: Université Mustapha Stambouli; 2016.

Nour SM, Lawrence JR, Zhu H, Swerhone GDW, Welsh M, Welacky TW, Topp E. Bacteria associated with cysts of the soybean cyst (Heterodera glycines). Appl Environ Microbiol. 2003;69(1):607-15. http://dx.doi.org/10.1128/aem.69.1.607-615.2003

Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol. 1988;26(1):379-407. http://dx.doi.org/10.1146/annurev.py.26.090188.002115

Kurniasari I, Indarti S, Widianto D. The exploration of bacteria having biocontrol ability against the golden cyst nematode (Globodera rostochiensis) In: Potato cultivation lands. Indian J Sci Technol. 20191;12(15):1-6. http://dx.doi.org/10.17485/ijst/2019/v12i15/143985

Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & Amp; White) Chitwood. Can J Microbiol. 2002;48(9):772-86. http://dx.doi.org/10.1139/w02-071

Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH et al. GacS-Dependent Production of 2R, 3R-Butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact. 2006;19(8):924-30. http://dx.doi.org/10.1094/mpmi-19-0924

Ghodbani T, Bougherira A. Le littoral algérien entre protection de l’environnement et impératifs du développement, Enjeux et perspectives. Geo-Eco-Trop. 2019 43(4):559-68.

Netscher C, Luc M, Merny G. Description du mâle d'Heterodera sacchari Luc and Merny, 1963. Nematologica. 1969,15(1):156-57. https://doi.org/10.1163/187529269X00218

Fenwick DW. Methods for the recovery and counting of cysts of Heterodera schachtii from soil. J Helminthol. 1940;18(4):155-72. http://dx.doi.org/10.1017/s0022149x00031485

Assia FR, Righi K, Boungab K, Mokabli A. Étude de l’infestation des céréales par les nématodes à kyste «?Heterodera spp.?» et distribution des espèces en cause dans l’Ouest de l’Algérie. Cah Agric. 2019;28:1-10. http://dx.doi.org/10.1051/cagri/2019017

Handoo ZA. A key and compendium to species of the Heterodera avenae group (Nematoda: Heteroderidae). J Nematol. 2002;34(3):250-62.

Powers TO, Fleming CC. Biochemical and molecular characterization. In: Perry RN, Wright DJ, editors. The physiology and biochemistry of free-living and plant-parasitic nematodes. CAB International: Wallingford, UK. 1998; p. 355-80.

Van Heese E. Globodera pallida. European and mediterranean plant protection organization (EPPO) datasheets on pests recommended for regulation. 2023; Available from: https://gd.eppo.int/taxon/HETDPA/datasheet

Heungens K, Mugniéry D, Van Montagu M, Gheysen G, Niebel A. A method to obtain disinfected Globodera infective juveniles directly from cysts. Fundam Appl Nematol. 1996;19(1):91-93.

Sanders ER. Aseptic laboratory techniques: Plating methods. J Vis Exp. 2012;63:3064. http://dx.doi.org/10.3791/3064-v

Salvamani S, Nawawi NM. Macroscopic and microscopic approaches for identification of fungi from plant soil of cameron highlands. BSTR. 2014,2(1):14-18. http://dx.doi.org/10.54987/bstr.v2i1.68

Nakasone KK, Peterson SW, Jong SC. Preservation and distribution of fungal cultures. Biodiversity of Fungi. 2004;p 37-47. http://dx.doi.org/10.1016/b978-012509551-8/50006-4

Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem. 2011;44(1):104-09. http://dx.doi.org/10.1016/j.clinbiochem.2010.06.017

Popovic NT, Kazazic SP, Strunjak-Perovic I, Coz-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res. 2017;152:7-16. http://dx.doi.org/10.1016/j.envres.2016.09.020

Sayre RM, Starr MP. Bacterial diseases and antagonisms of nematodes. An overview. In: Poinar GO. Diseases of Nematodes. 1988;69-102. http://dx.doi.org/10.1201/9781351071475-5

Hayashi M, Wada K, Munakata K. New nematicidal metabolites from a fungus, Irpex lacteus. Agric Biol Chem. 1981 Jun;45(6):15279. http://dx.doi.org/10.1080/00021369.1981.10864743

Stadler M, Fouron JY, Sterner O, Anke H. 1,2-dihydroxymintlactone, a new nematicidal monoterpene isolated from the basidiomycete Cheimonophyllum candidissimum (Berk & Amp; Curt.) Sing. Zeitschrift für Naturforschung C J Biosci. 1995;50(7-8):473-75. http://dx.doi.org/10.1515/znc-1995-7-802

Mayer A, Anke H, Sterner O. Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius I. fermentation and biological activity. Natural Product Letters. 1997;10(1):25-32. http://dx.doi.org/10.1080/10575639708043691

Stabler M, Anke H, Sterner O. Metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. III. Production of novel isocoumarin derivatives, isolation and biological activities. J Antibiot. 1995;48(3):261-66. http://dx.doi.org/10.7164/antibiotics.48.261

Shan R, Stabler M, Sterner O, Anke H. New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum (Karst.) Karst. VIII. Isolation, structure determination and biological activities of minor metabolites structurally related to mycorrhizin A. J Antibiot. 1996;49(5):447-52. http://dx.doi.org/10.7164/antibiotics.49.447

Chen S, Dickson DW. Biological control of plant-parasitic nematodes. In: Manzanilla-López RH, Marbán-Mendoza N, editors. Practical plant nematology. Guadalajara, Jalisco, Mexico: Colegio de Postgraduados and Mundi-Prensa, Biblioteca Básica de Agricultura. 2012; p. 761-811.

Emmert EAB, Handelsman J Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol Lett. 1999;171(1):1-9. http://dx.doi.org/10.1111/j.1574-6968.1999.tb13405.x

Siddiqui ZA, Mahmood I. Role of bacteria in the management of plant parasitic nematodes: A review. Bioresour Technol. 1999;69(2):167-79. http://dx.doi.org/10.1016/s0960-8524(98)00122-9

Meyer SL. United states department of agriculture–Agricultural research service research programs on microbes for management of plant?parasitic nematodes. Pest Manag Sci. 2003;59(6-7):665-70. http://dx.doi.org/10.1002/ps.708

Wilkins CL, Lao JO. Identification of microorganism by mass-spectrometry. Hoboken: John Wiley and Sons Inc, 1st ed. 2006.

Tournus C, Lemée L, Nouvellon M, Pestel-Caron M. Identification des Pseudomonas sp. par spectrométrie de masse type MALDI-TOF. In RICAI. 2016. Available from: https://normandie-univ.hal.science/hal-02269271

Jacquier H, Carbonnelle E, Corvec S, Illiaquer M, Le Monnier A, Bille E et al. Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates. Eur J Clin Microbiol Infect Dis. 2011;30(12):1579-86. https://doi.org/10.1007/s10096-011-1263-5

Seibold E, Maier T, Kostrzewa M, Zeman E, Splettstoesser W. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: Fast, reliable, robust and cost-effective differentiation on species and subspecies levels. J Clin Microbiol. 2010;48(4):1061-69. http://dx.doi.org/10.1128/jcm.01953-09

Sharifi Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G. Biocontrol of soil-borne fungal plant diseases by 2, 4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol. 1998;104:631-43. https://doi.org/10.1023/A:1008672104562

Dowling DN, O’Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 1994;12(4):133-41. http://dx.doi.org/10.1016/0167-7799(94)90091-4

Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F. Role of 2,4-Diacetylphloroglucinol in the interactions of the biocontrol Pseudomonas strain F113 with the potato cyst nematode, Globodera rostochiensis. Appl Environ Microbiol. 1997;63(4):1357-61. http://dx.doi.org/10.1128/aem.63.4.1357-1361.1997

Ali Siddiqui I, Ehetshamul?Haque S, Shahid Shaukat S. Use of rhizobacteria in the control of root rot–root knot disease complex of mungbean. J Phytopathol. 2001;149(6):337-46. http://dx.doi.org/10.1046/j.1439-0434.2001.00630.x

Pandey M, Patel SS, Gabriel A. Kinetic pathway of pyrophosphorolysis by a retrotransposon reverse transcriptase. PLoS One. 2008;3(1):e1389. http://dx.doi.org/10.1371/journal.pone.0001389

Khan Z, Kim YH. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Appl Soil Ecol. 2007;35(2):370-79. http://dx.doi.org/10.1016/j.apsoil.2006.07.007

Trifonova Z, Tsvetkov I, Bogatzevska N, Batchvarova R. Efficiency of Pseudomonas spp. for biocontrol of the potato cyst nematode Globodera rostochiensis (Woll.). Bulg. J Agric Sci. 2014;20(3):666-69.

Tian B, Yang J, Zhang KQ. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action and future prospects. FEMS Microbiol Ecol. 2007;61(2):197-213. http://dx.doi.org/10.1111/j.1574-6941.2007.00349.x

Ryan NA, Jones P. The ability of rhizosphere bacteria isolated from nematode host and non-host plants to influence the hatch in vitro of the two potato cyst nematode species, Globodera rostochiensis and G. pallida. Nematology. 2004;6(3):375-87. http://dx.doi.org/10.1163/1568541042360528

Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep. 2016;6:28756. http://dx.doi.org/10.1038/srep28756

Hasky-Guenther K, Hoffmann-Hergarten S, Sikora RA. Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam Appl Nematol. 1998;21(5):511-17.

Widianto D, Pramita AD, Kurniasari I, Arofatullah NA, Prijambada ID, Widada J, Indarti S. Bacillus is one of the most potential genus as a biocontrol agent of golden cyst nematode Globodera rostochiensis. Arch Phytopathol. 2021;54(19-20):2191-205. http://dx.doi.org/10.1080/03235408.2021.1925501

Clarke AJ, Cox PM, Shepherd AM. Chemical composition of egg shells of potato cyst nematode Heterodera rostochiensis woll. Biochem J. 1967;104:1056-60. https://doi.org/10.1042/bj1041056

Ann Y. Screening for nematicidal activities of Bacillus species against root knot nematode Meloidogyne incognita. Am J Exp Agric. 2013;3(4):794-805. http://dx.doi.org/10.9734/ajea/2013/3690

Lee YS, Kim KY. Antagonistic potential of Bacillus pumilus L1 against root?knot nematode, Meloidogyne arenaria. J Phytopathol. 2015;164(1):29-39. http://dx.doi.org/10.1111/jph.12421

Cox GN, Kusch M, Edgar RS. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. JCB. 1981;90(1):7-17. http://dx.doi.org/10.1083/jcb.90.1.7

Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CAMJJ, Tunlid A. Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol. 2002;68(7):3408-15. http://dx.doi.org/10.1128/aem.68.7.3408-3415.2002

Padgham JL, Sikora RA. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 2007;26(7):971-77. http://dx.doi.org/10.1016/j.cropro.2006.09.004

Al-Rehiayani S, Hafez SL, Thornton M, Sundararaj P. Investigation-research: Effects of Pratylenchus neglectus, Bacillus megaterium and oil radish or rapeseed green manure on reproductive potential of Meloidogyne chitwoodi on potato. Nematropica.1999;29(1):37-49.

Abd-El-Khair H, El-Nagdi WMA, Youssef MMA, Abd-Elgawad MMM, Dawood MG. Protective effect of Bacillus subtilis, B. pumilus and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea. BNRC. 2019;43:1-7. http://dx.doi.org/10.1186/s42269-019-0108-8 3.

Zhou Y, Chen J, Zhu X, Wang Y, Liu X, Fan H et al. Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode (Heterodera glycines) in soybean. Pest Manag Sci. 2021;77(1):568-76. https://doi.org/10.1002/ps.6057

Zhou Y, Wang Y, Zhu X, Liu R, Xiang P, Chen J et al. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean. Plos One. 2017;12(8):1-14. http://dx.doi.org/10.1371/journal.pone.0182654

Smedsgaard J, Nielsen J. Metabolite profiling of fungi and yeast: From phenotype to metabolome by MS and informatics. J Exp Bot. 2004;56(410):273-86. http://dx.doi.org/10.1093/jxb/eri068

Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol. 2007;1(3):212-33. http://dx.doi.org/10.2174/187220807782330165

Nigh EA, Thomason IJ, Van Gundy SD. Identification and distribution of fungal parasites of Heterodera schachtii eggs in California. Phytopathology. 1980;70(9):885-89. http://dx.doi.org/10.1094/phyto-70-884

Jang JY, Choi YH, Shin TS, Kim TH, Shin KS, Park HW et al. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. In: Han KH, editor. Plos One. 2016;11(6):1-15. http://dx.doi.org/10.1371/journal.pone.0156230

Martinez-Beringola ML, Salto T, Vázquez G, Larena I, Melgarejo P, De Cal A. Penicillium oxalicum reduces the number of cysts and juveniles of potato cyst nematodes. J Appl Microbiol. 2013;115(1):199-206. http://dx.doi.org/10.1111/jam.12213

Vurro M, Evidente A, Andolfi A, Chiara Zonno M, Giordano F, Motta A. Brefeldin A and ?,?-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale. Plant Sci. 1998;138(1):67-79. http://dx.doi.org/10.1016/s0168-9452(98)00131-9

Kind R, Zeeck A, Grabley S, Thiericke R, Zerlin M. Secondary metabolites by chemical screening. 30. Helmidiol, a New Macrodiolide from Alternaria alternata. J Nat Prod. 1996;59(5):539-40. http://dx.doi.org/10.1021/np960083q

Janowicz K, Wronkowska H, Mazurkiewicz-Zapalowicz KD. Interactions between Globodera rostochiensis Woll. and Rhizoctonia solani Kuhn on the potato. Acta Microbiol. Pol. 1994;43(2):205-10.

Jiang C, Song J, Zhang J, Yang Q. Identification and characterization of the major antifungal substance against Fusarium sporotrichioides from Chaetomium globosum. World JMB. 2017;33:1-9. http://dx.doi.org/10.1007/s11274-017-2274-x

Meyer S, Huettel R, Liu XZ, Humber R, Juba J, Nitao J. Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility. Nematology. 2004;6(1):23-32. http://dx.doi.org/10.1163/156854104323072883

Djian?Caporalino C. Root?knot nematodes (Meloidogyne spp.), a growing problem in French vegetable crops. EPPO Bull. 2012;42(1):127-37. http://dx.doi.org/10.1111/j.1365-2338.2012.02530.x

Published

15-08-2024 — Updated on 18-08-2024

Versions

How to Cite

1.
Boubkar AY, Righi K, Mokrani S. Study of natural antagonists of potato cyst nematode “Globodera sp.” in west Algeria: Nematological analysis . Plant Sci. Today [Internet]. 2024 Aug. 18 [cited 2024 Nov. 24];11(3). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2986

Issue

Section

Research Articles