Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 1 (2024)

Influence of some chemicals and solvents on the lytic activity and the adsorption of bacteriophages on Pectobacterium carotovoroum Subsp. carotovorum

DOI
https://doi.org/10.14719/pst.2998
Submitted
6 October 2023
Published
16-01-2024 — Updated on 23-01-2024
Versions

Abstract

Recently, bacteriophages have been used to control hazardous bacterial soft rot disease on crops. However, agricultural plants are frequently treated with different chemicals (fertilizers, pesticides and solvents), so we assessed the effect of some commonly used chemicals and solvents on the lytic activity of tested bacteriophages and their adsorption potential. This study reports the isolation of three specific phages against the Pectobacterium carotovorum subsp. carotovorum DSM 30170 strain, designated as ?PC1, ?PC2 and ?PC3, then partially characterized using electron microscopy and genome size. The 3 isolated phages belong to the Myoviridae family. The results obtained were based on the plaque-forming unit observed after incubation. By increasing the chemical concentrations (from 0.1 to 0.5 mM), calcium chloride (CaCl2) and potassium chloride (KCl) showed a significant increase in the lytic activity of the phages. Copper sulphate (CuSO4) and copper chloride (CuCl2) showed a substantial decrease in the activity of ?PC3; however, such a decrease was insignificant for ?PC1 and ?PC2. By increasing the solvent concentrations (from 30 % v/v to 70 % v/v), propanol, ethanol and methanol showed a significant decrease in the count of the three isolated phages, ?PC1, ?PC2 and ?PC3, compared to the control. Chloroform was the only solvent that did not reduce the phage titer. Our findings offer significant information for developing a strategy to combat the P. carotovorum subsp. carotovorum caused bacterial soft rot disease. avoiding copper compounds and alcoholic solvents such as propanol, ethanol and methanol in plots where phages are applied seems advisable.

References

  1. Abd-El-Khair H, Abdel-Gaied TG, Mikhail MS, Abdel-Alim AI, El-Nasr HIS. Biological
  2. control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial
  3. soft rot in vegetables, in vitro and in vivo tests. Bulletin of the National Research Centre.
  4. ;45:1-9. https://doi.org/10.1186/s42269-021-00491-4
  5. Abu-Obeid IM. Soft rot disease in Jordan: A review. Advances in Environmental Biology.
  6. ;13(6):1-6. http://doi.org/10.22587/aeb.2019.13.6.1
  7. Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential control of potato
  8. soft rot disease by the obligate predators Bdellovibrio and like organisms. Applied and
  9. Environmental Microbiology. 2020;86(6):e02543-02519.
  10. https://doi.org/10.1128/AEM.02543-19
  11. Khedr AA. Management of soft rot disease, caused by Erwinia carotovora subsp.
  12. carotovora in potato tubers. African Journal of Biological Sciences. 2019;15(1):211-18. https://doi.org/10.21608/ajbs.2019.72268
  13. Agyemang PA, Kabir MN, Kersey CM, Dumenyo CK. The bacterial soft rot pathogens,
  14. Pectobacterium carotovorum and P. atrosepticum, respond to different classes of
  15. virulence-inducing host chemical signals. Horticulturae. 2020;6(1):13.
  16. https://doi.org/10.3390/horticulturae6010013
  17. Be?o F, Horsáková I, Kmoch M, Petrzik K, Krátká G, Šev?ík R. Bacteriophages as a
  18. strategy to protect potato tubers against Dickeya dianthicola and Pectobacterium
  19. carotovorum soft rot. Microorganisms. 2022;10(12):2369. https://doi.org/10.3390/microorganisms10122369
  20. Liang X, Radosevich M, DeBruyn JM, Wilhelm SW, McDearis R, Zhuang J.
  21. Incorporating viruses into soil ecology: A new dimension to understand biogeochemical
  22. cycling. Critical Reviews in Environmental Science and Technology. 2023:1-21.
  23. https://doi.org/10.1080/10643389.2023.2223123
  24. Batinovic S, Wassef F, Knowler SA, Rice DT, Stanton CR, Rose J, Tucci J, Nittami T,
  25. Vinh A, Drummond GR. Bacteriophages in natural and artificial environments. Pathogens.
  26. ;8(3):100.
  27. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature:
  28. Mechanisms, impact and ecology of temperate phages. The ISME journal. 2017;11 (7):1511-20. https://doi.org/10.1038/ismej.2017.16
  29. D’Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a potential 360-
  30. degree pathogen control strategy. Microorganisms. 2021;9(2):261.
  31. https://doi.org/10.3390/microorganisms9020261
  32. Czajkowski R, Perombelon MC, van Veen JA, van der Wolf JM. Control of blackleg and
  33. tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant
  34. Pathology. 2011;60(6):999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x
  35. Kering KK, Kibii BJ, Wei H. Biocontrol of phytobacteria with bacteriophage cocktails.
  36. Pest Management Science. 2019;75(7):1775-81. https://doi.org/10.1002/ps.5324
  37. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 2019;24(14):2558. https://doi.org/10.3390/molecules24142558
  38. Itelima J, Bang W, Onyimba I, Sila M, Egbere O. Bio-fertilizers as key player in
  39. enhancing soil fertility and crop productivity: A review. Direct Research Journal of
  40. Agriculture and Food Science. 2018;6(3):73-83. http://hdl.handle.net/123456789/1999
  41. Xi L, Zhang M, Zhang L, Lew TT, Lam YM. Novel materials for urban farming.
  42. Advanced Materials. 2022;34(25):2105009. https://doi.org/10.1002/adma.202105009
  43. Balogh B, Jones J, Momol M, Olson S. Persistence of bacteriophages as biocontrol
  44. agents in the tomato canopy. In 1st International Symposium on Tomato Diseases. 2004;695:299-302.
  45. AlKhazindar M, Sayed E, Khalil M, Zahran D. Isolation and characterization of two
  46. phages infecting Streptomyces scabies. Research Journal of
  47. Pharmaceutical Biological and Chemical Sciences. 2016;7(2):1351-
  48. Abo-Senna A, El-Fouly M, Hussein H, Swailam H, Abdel-Aal M. Biocontrol of food
  49. borne Salmonella using bacteriophages. Arab Journal of Nuclear Sciences and
  50. Applications (Online). 2018;51(1):100-09. https://doi.org/10.5771/0010-3497-2018-1-109
  51. Naligama KN, Halmillawewa AP. Pectobacterium carotovorum phage vB_PcaM_P7_Pc
  52. is a new member of the genus Certrevirus. Microbiology Spectrum. 2022;10(6):e03126-32. https://doi.org/10.1128/spectrum.03126-22
  53. Jurczak-Kurek A, G?sior T, Nejman-Fale?czyk B, Bloch S, Dydecka A, Topka G et al. Biodiversity of bacteriophages:
  54. Morphological and biological properties of a large group of phages isolated from urban
  55. sewage. Scientific Reports. 2016;6(1):1-17. https://doi.org/10.1038/srep34338
  56. Kalatzis PG, Bastías R, Kokkari C, Katharios P. Isolation and characterization of two
  57. lytic bacteriophages, ?St2 and ?Grn1; phage therapy application for biological control of
  58. Vibrio alginolyticus in aquaculture live feeds. PloS one. 2016;11(3):e0151101. https://doi.org/10.1371/journal.pone.0151101
  59. Phothichaisri W, Ounjai P, Phetruen T, Janvilisri T, Khunrae P, Singhakaew S et al.
  60. Characterization of bacteriophages infecting
  61. clinical isolates of Clostridium difficile. Frontiers in Microbiology. 2018;9:1701.
  62. https://doi.org/10.3389/fmicb.2018.01701
  63. Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, Klenk H-P, Wittmann J.
  64. Isolation, characterization and analysis of bacteriophages from the haloalkaline lake
  65. Elmenteita, Kenya. PLoS One. 2019;14(4):e0215734.
  66. https://doi.org/10.1371/journal.pone.0215734
  67. Othman B, Askora A, Abo-Senna AS. Isolation and characterization of a Siphoviridae
  68. phage infecting Bacillus megaterium from a heavily trafficked holy site in Saudi Arabia.
  69. Folia Microbiologica. 2015;60:289-95. https://doi.org/10.1007/s12223-015-0375-1
  70. Xue Y, Zhai S, Wang Z, Ji Y, Wang G, Wang T et al. The
  71. yersinia phage X1 administered orally efficiently protects a murine chronic enteritis
  72. model against Yersinia enterocolitica infection. Frontiers in Microbiology. 2020; 11:351.https://doi.org/10.3389/fmicb.2020.00351
  73. Lee S, Vu N-T, Oh E-J, Rahimi-Midani A, Thi T-N, Song Y-R et al. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage
  74. phiPccP-1 in Kimchi cabbage. Microorganisms. 2021;9(4):779.
  75. https://doi.org/10.3390/microorganisms9040779
  76. El-Afifi S, Hammad A. Biochemical and molecular characteristics of Pc1 virulent phage
  77. isolate infecting Pectobacterium carotovorum. Pakistan Journal of Biological Sciences:
  78. PJBS. 2020;23(11):1481-86. https://doi.org/10.3923/pjbs.2020.1481.1486
  79. Chandrarathna H, Nikapitiya C, Dananjaya S, De Silva B, Heo G-J, De Zoysa M, Lee J.
  80. Isolation and characterization of phage AHP-1 and its combined effect with
  81. chloramphenicol to control Aeromonas hydrophila. Brazilian Journal of Microbiology.
  82. ;51:409-16. https://doi.org/10.1007/s42770-019-00178-z
  83. Voronina M, Bugaeva E, Vasiliev D, Kabanova A, Barannik A, Shneider M et al. Characterization of Pectobacterium
  84. carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato
  85. soft rot. Microbiology. 2019;88:451-60. https://doi.org/10.1134/S0026261719040118
  86. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nature
  87. Reviews Microbiology. 2020;18(3):125-38. https://doi.org/10.1038/s41579-019-0311-5
  88. Kaliniene L, Å imoli?nas E, Truncait? L, Zajan?kauskait? A, Nainys J, Kaupinis A, Valius
  89. M, Meškys R. Molecular analysis of Arthrobacter myovirus vB_ArtM-ArV1: We blame it
  90. on the tail. Journal of Virology. 2017;91(8):e00023-00017.
  91. https://doi.org/10.1128/jvi.00023-17
  92. Parena AJS, Silva BBI, Mercado RML, Sendon AAA, Signabon FB, Balidion JF, Encabo
  93. JR. Lytic phages display protective effects against soft rot-causing Pectobacterium sp. Biocontrol Science and Technology. 2022;32(11):1326-45.
  94. https://doi.org/10.1080/09583157.2022.2122403
  95. Marei E, El-Afifi SI, Elsharouny T, Hammad AM. Biological control of Pectobacterium
  96. carotovorum via specific lytic bacteriophage. J Basic Appl Sci Res. 2017;7:1-9.
  97. Muturi P, Yu J, Maina AN, Kariuki S, Mwaura FB, Wei H. Bacteriophages isolated in
  98. China for the control of Pectobacterium carotovorum causing potato soft rot in Kenya.
  99. Virologica Sinica. 2019;34:287-94. https://doi.org/10.1007/s12250-019-00091-7
  100. Svircev A, Roach D, Castle A. Framing the future with bacteriophages in agriculture.
  101. Viruses. 2018;10(5):218. https://doi.org/10.3390/v10050218
  102. Lim J-A, Jee S, Lee DH, Roh E, Jung K, Oh C, Heu S. Biocontrol of Pectobacterium
  103. carotovorum subsp. carotovorum using bacteriophage PP1. Journal of Microbiology and
  104. Biotechnology. 2013;23(8):1147-53. http://dx.doi.org/10.4014/jmb.1304.04001
  105. Sharma M, Kumar D, Poluri KM. Elucidating the pH-dependent structural transition of
  106. T7 bacteriophage endolysin. Biochemistry. 2016;55(33):4614-25.
  107. https://doi.org/10.1021/acs.biochem.6b00240
  108. Czajkowski R, Ozymko Z, Lojkowska E. Isolation and characterization of novel
  109. soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant
  110. Pathology. 2014;63(4):758-72. https://doi.org/10.1111/ppa.12157
  111. Szermer-Olearnik B, Drab M, M?kosa M, Zembala M, Barbasz J, D?browska K,
  112. Boraty?ski J. Aggregation/dispersion transitions of T4 phage triggered by environmental
  113. ion availability. Journal of Nanobiotechnology. 2017;15(1):1-15.
  114. https://doi.org/10.1186/s12951-017-0266-5
  115. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Applied and
  116. Environmental Microbiology. 2011;77(5):1541-47.
  117. https://doi.org/10.1128/AEM.02766-10
  118. Li J, Dennehy JJ. Differential bacteriophage mortality on exposure to copper. Applied and
  119. Environmental Microbiology. 2011;77(19):6878-83.
  120. https://doi.org/10.1128/AEM.05661-11
  121. Buttimer C, Lynch C, Hendrix H, Neve H, Noben J-P, Lavigne R, Coffey A. Isolation and
  122. characterization of Pectobacterium phage vB_PatM_CB7: New insights into the genus
  123. Certrevirus. Antibiotics. 2020; 9(6):352. https://doi.org/10.3390/antibiotics9060352
  124. Lukianova AA, Evseev PV, Shneider MM, Dvoryakova EA, Tokmakova AD, Shpirt AM et al.
  125. Pectobacterium versatile
  126. bacteriophage possum: A complex polysaccharide-deacetylating tail fiber as a tool for
  127. host recognition in pectobacterial schitoviridae. International Journal of Molecular
  128. Sciences. 2022; 23(19):11043. https://doi.org/10.3390/ijms231911043

Downloads

Download data is not yet available.