This is an outdated version published on 16-01-2024. Read the most recent version.
Forthcoming

Influence of some chemicals and solvents on the lytic activity and the adsorption of bacteriophages on Pectobacterium carotovoroum Subsp. carotovorum

Authors

DOI:

https://doi.org/10.14719/pst.2998

Keywords:

Pectobacterium carotovorum subsp. carotovorum, Soft rot, Bacteriophages, Pesticides, Fertilizers, Solvents

Abstract

Recently, bacteriophages have been used to control hazardous bacterial soft rot disease on crops. However, agricultural plants are frequently treated with different chemicals (fertilizers, pesticides and solvents), so we assessed the effect of some commonly used chemicals and solvents on the lytic activity of tested bacteriophages and their adsorption potential. This study reports the isolation of three specific phages against the Pectobacterium carotovorum subsp. carotovorum DSM 30170 strain, designated as ?PC1, ?PC2 and ?PC3, then partially characterized using electron microscopy and genome size. The 3 isolated phages belong to the Myoviridae family. The results obtained were based on the plaque-forming unit observed after incubation. By increasing the chemical concentrations (from 0.1 to 0.5 mM), calcium chloride (CaCl2) and potassium chloride (KCl) showed a significant increase in the lytic activity of the phages. Copper sulphate (CuSO4) and copper chloride (CuCl2) showed a substantial decrease in the activity of ?PC3; however, such a decrease was insignificant for ?PC1 and ?PC2. By increasing the solvent concentrations (from 30 % v/v to 70 % v/v), propanol, ethanol and methanol showed a significant decrease in the count of the three isolated phages, ?PC1, ?PC2 and ?PC3, compared to the control. Chloroform was the only solvent that did not reduce the phage titer. Our findings offer significant information for developing a strategy to combat the P. carotovorum subsp. carotovorum caused bacterial soft rot disease. avoiding copper compounds and alcoholic solvents such as propanol, ethanol and methanol in plots where phages are applied seems advisable.

Downloads

Download data is not yet available.

References

Abd-El-Khair H, Abdel-Gaied TG, Mikhail MS, Abdel-Alim AI, El-Nasr HIS. Biological

control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial

soft rot in vegetables, in vitro and in vivo tests. Bulletin of the National Research Centre.

;45:1-9. https://doi.org/10.1186/s42269-021-00491-4

Abu-Obeid IM. Soft rot disease in Jordan: A review. Advances in Environmental Biology.

;13(6):1-6. http://doi.org/10.22587/aeb.2019.13.6.1

Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential control of potato

soft rot disease by the obligate predators Bdellovibrio and like organisms. Applied and

Environmental Microbiology. 2020;86(6):e02543-02519.

https://doi.org/10.1128/AEM.02543-19

Khedr AA. Management of soft rot disease, caused by Erwinia carotovora subsp.

carotovora in potato tubers. African Journal of Biological Sciences. 2019;15(1):211-18. https://doi.org/10.21608/ajbs.2019.72268

Agyemang PA, Kabir MN, Kersey CM, Dumenyo CK. The bacterial soft rot pathogens,

Pectobacterium carotovorum and P. atrosepticum, respond to different classes of

virulence-inducing host chemical signals. Horticulturae. 2020;6(1):13.

https://doi.org/10.3390/horticulturae6010013

Be?o F, Horsáková I, Kmoch M, Petrzik K, Krátká G, Šev?ík R. Bacteriophages as a

strategy to protect potato tubers against Dickeya dianthicola and Pectobacterium

carotovorum soft rot. Microorganisms. 2022;10(12):2369. https://doi.org/10.3390/microorganisms10122369

Liang X, Radosevich M, DeBruyn JM, Wilhelm SW, McDearis R, Zhuang J.

Incorporating viruses into soil ecology: A new dimension to understand biogeochemical

cycling. Critical Reviews in Environmental Science and Technology. 2023:1-21.

https://doi.org/10.1080/10643389.2023.2223123

Batinovic S, Wassef F, Knowler SA, Rice DT, Stanton CR, Rose J, Tucci J, Nittami T,

Vinh A, Drummond GR. Bacteriophages in natural and artificial environments. Pathogens.

;8(3):100.

Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature:

Mechanisms, impact and ecology of temperate phages. The ISME journal. 2017;11 (7):1511-20. https://doi.org/10.1038/ismej.2017.16

D’Accolti M, Soffritti I, Mazzacane S, Caselli E. Bacteriophages as a potential 360-

degree pathogen control strategy. Microorganisms. 2021;9(2):261.

https://doi.org/10.3390/microorganisms9020261

Czajkowski R, Perombelon MC, van Veen JA, van der Wolf JM. Control of blackleg and

tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant

Pathology. 2011;60(6):999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x

Kering KK, Kibii BJ, Wei H. Biocontrol of phytobacteria with bacteriophage cocktails.

Pest Management Science. 2019;75(7):1775-81. https://doi.org/10.1002/ps.5324

Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 2019;24(14):2558. https://doi.org/10.3390/molecules24142558

Itelima J, Bang W, Onyimba I, Sila M, Egbere O. Bio-fertilizers as key player in

enhancing soil fertility and crop productivity: A review. Direct Research Journal of

Agriculture and Food Science. 2018;6(3):73-83. http://hdl.handle.net/123456789/1999

Xi L, Zhang M, Zhang L, Lew TT, Lam YM. Novel materials for urban farming.

Advanced Materials. 2022;34(25):2105009. https://doi.org/10.1002/adma.202105009

Balogh B, Jones J, Momol M, Olson S. Persistence of bacteriophages as biocontrol

agents in the tomato canopy. In 1st International Symposium on Tomato Diseases. 2004;695:299-302.

AlKhazindar M, Sayed E, Khalil M, Zahran D. Isolation and characterization of two

phages infecting Streptomyces scabies. Research Journal of

Pharmaceutical Biological and Chemical Sciences. 2016;7(2):1351-

Abo-Senna A, El-Fouly M, Hussein H, Swailam H, Abdel-Aal M. Biocontrol of food

borne Salmonella using bacteriophages. Arab Journal of Nuclear Sciences and

Applications (Online). 2018;51(1):100-09. https://doi.org/10.5771/0010-3497-2018-1-109

Naligama KN, Halmillawewa AP. Pectobacterium carotovorum phage vB_PcaM_P7_Pc

is a new member of the genus Certrevirus. Microbiology Spectrum. 2022;10(6):e03126-32. https://doi.org/10.1128/spectrum.03126-22

Jurczak-Kurek A, G?sior T, Nejman-Fale?czyk B, Bloch S, Dydecka A, Topka G et al. Biodiversity of bacteriophages:

Morphological and biological properties of a large group of phages isolated from urban

sewage. Scientific Reports. 2016;6(1):1-17. https://doi.org/10.1038/srep34338

Kalatzis PG, Bastías R, Kokkari C, Katharios P. Isolation and characterization of two

lytic bacteriophages, ?St2 and ?Grn1; phage therapy application for biological control of

Vibrio alginolyticus in aquaculture live feeds. PloS one. 2016;11(3):e0151101. https://doi.org/10.1371/journal.pone.0151101

Phothichaisri W, Ounjai P, Phetruen T, Janvilisri T, Khunrae P, Singhakaew S et al.

Characterization of bacteriophages infecting

clinical isolates of Clostridium difficile. Frontiers in Microbiology. 2018;9:1701.

https://doi.org/10.3389/fmicb.2018.01701

Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, Klenk H-P, Wittmann J.

Isolation, characterization and analysis of bacteriophages from the haloalkaline lake

Elmenteita, Kenya. PLoS One. 2019;14(4):e0215734.

https://doi.org/10.1371/journal.pone.0215734

Othman B, Askora A, Abo-Senna AS. Isolation and characterization of a Siphoviridae

phage infecting Bacillus megaterium from a heavily trafficked holy site in Saudi Arabia.

Folia Microbiologica. 2015;60:289-95. https://doi.org/10.1007/s12223-015-0375-1

Xue Y, Zhai S, Wang Z, Ji Y, Wang G, Wang T et al. The

yersinia phage X1 administered orally efficiently protects a murine chronic enteritis

model against Yersinia enterocolitica infection. Frontiers in Microbiology. 2020; 11:351.https://doi.org/10.3389/fmicb.2020.00351

Lee S, Vu N-T, Oh E-J, Rahimi-Midani A, Thi T-N, Song Y-R et al. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage

phiPccP-1 in Kimchi cabbage. Microorganisms. 2021;9(4):779.

https://doi.org/10.3390/microorganisms9040779

El-Afifi S, Hammad A. Biochemical and molecular characteristics of Pc1 virulent phage

isolate infecting Pectobacterium carotovorum. Pakistan Journal of Biological Sciences:

PJBS. 2020;23(11):1481-86. https://doi.org/10.3923/pjbs.2020.1481.1486

Chandrarathna H, Nikapitiya C, Dananjaya S, De Silva B, Heo G-J, De Zoysa M, Lee J.

Isolation and characterization of phage AHP-1 and its combined effect with

chloramphenicol to control Aeromonas hydrophila. Brazilian Journal of Microbiology.

;51:409-16. https://doi.org/10.1007/s42770-019-00178-z

Voronina M, Bugaeva E, Vasiliev D, Kabanova A, Barannik A, Shneider M et al. Characterization of Pectobacterium

carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato

soft rot. Microbiology. 2019;88:451-60. https://doi.org/10.1134/S0026261719040118

Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nature

Reviews Microbiology. 2020;18(3):125-38. https://doi.org/10.1038/s41579-019-0311-5

Kaliniene L, Šimoli?nas E, Truncait? L, Zajan?kauskait? A, Nainys J, Kaupinis A, Valius

M, Meškys R. Molecular analysis of Arthrobacter myovirus vB_ArtM-ArV1: We blame it

on the tail. Journal of Virology. 2017;91(8):e00023-00017.

https://doi.org/10.1128/jvi.00023-17

Parena AJS, Silva BBI, Mercado RML, Sendon AAA, Signabon FB, Balidion JF, Encabo

JR. Lytic phages display protective effects against soft rot-causing Pectobacterium sp. Biocontrol Science and Technology. 2022;32(11):1326-45.

https://doi.org/10.1080/09583157.2022.2122403

Marei E, El-Afifi SI, Elsharouny T, Hammad AM. Biological control of Pectobacterium

carotovorum via specific lytic bacteriophage. J Basic Appl Sci Res. 2017;7:1-9.

Muturi P, Yu J, Maina AN, Kariuki S, Mwaura FB, Wei H. Bacteriophages isolated in

China for the control of Pectobacterium carotovorum causing potato soft rot in Kenya.

Virologica Sinica. 2019;34:287-94. https://doi.org/10.1007/s12250-019-00091-7

Svircev A, Roach D, Castle A. Framing the future with bacteriophages in agriculture.

Viruses. 2018;10(5):218. https://doi.org/10.3390/v10050218

Lim J-A, Jee S, Lee DH, Roh E, Jung K, Oh C, Heu S. Biocontrol of Pectobacterium

carotovorum subsp. carotovorum using bacteriophage PP1. Journal of Microbiology and

Biotechnology. 2013;23(8):1147-53. http://dx.doi.org/10.4014/jmb.1304.04001

Sharma M, Kumar D, Poluri KM. Elucidating the pH-dependent structural transition of

T7 bacteriophage endolysin. Biochemistry. 2016;55(33):4614-25.

https://doi.org/10.1021/acs.biochem.6b00240

Czajkowski R, Ozymko Z, Lojkowska E. Isolation and characterization of novel

soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant

Pathology. 2014;63(4):758-72. https://doi.org/10.1111/ppa.12157

Szermer-Olearnik B, Drab M, M?kosa M, Zembala M, Barbasz J, D?browska K,

Boraty?ski J. Aggregation/dispersion transitions of T4 phage triggered by environmental

ion availability. Journal of Nanobiotechnology. 2017;15(1):1-15.

https://doi.org/10.1186/s12951-017-0266-5

Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Applied and

Environmental Microbiology. 2011;77(5):1541-47.

https://doi.org/10.1128/AEM.02766-10

Li J, Dennehy JJ. Differential bacteriophage mortality on exposure to copper. Applied and

Environmental Microbiology. 2011;77(19):6878-83.

https://doi.org/10.1128/AEM.05661-11

Buttimer C, Lynch C, Hendrix H, Neve H, Noben J-P, Lavigne R, Coffey A. Isolation and

characterization of Pectobacterium phage vB_PatM_CB7: New insights into the genus

Certrevirus. Antibiotics. 2020; 9(6):352. https://doi.org/10.3390/antibiotics9060352

Lukianova AA, Evseev PV, Shneider MM, Dvoryakova EA, Tokmakova AD, Shpirt AM et al.

Pectobacterium versatile

bacteriophage possum: A complex polysaccharide-deacetylating tail fiber as a tool for

host recognition in pectobacterial schitoviridae. International Journal of Molecular

Sciences. 2022; 23(19):11043. https://doi.org/10.3390/ijms231911043

Published

16-01-2024

Versions

How to Cite

1.
Abdel-Aal MH, Hasanien YA, Younis NA, Didamony GE, Askora A, Balabel NM, Abdelaal K. Influence of some chemicals and solvents on the lytic activity and the adsorption of bacteriophages on Pectobacterium carotovoroum Subsp. carotovorum. Plant Sci. Today [Internet]. 2024 Jan. 16 [cited 2024 Nov. 21];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/2998

Issue

Section

Research Articles

Most read articles by the same author(s)