Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 1 (2025)

Nano-technology as an eco-friendly approach in agriculture

DOI
https://doi.org/10.14719/pst.3027
Submitted
18 October 2023
Published
28-12-2024 — Updated on 01-01-2025
Versions

Abstract

Global food security is now the most challenging issue due to the limited natural resources, low productivity of food crops in the agricultural sector, rapid climate changes and huge population growth. Researchers are trying to adopt newer innovations and technologies to increase the production of food crops to meet the demand. Nanotechnology is one of the most challenging technologies that could enhance the productivity of crops in sustainable agriculture, giving importance to nano-fertilizers, nano-pesticides, nano-biosensors and nano-material-based remediation strategies. The physical and chemical processes to produce nanoparticles (NP) have a detrimental effect on the ecosystem. Thus, green synthesis of NPs using various microorganisms offers a more promising and sustainable alternative. Nanotechnology is very promising as it has many potential benefits like improvement of food quality, minimization of agricultural inputs and enrichment of plants by absorbing nutrients from the soil. Nanoparticles can be used as nanofertilizers, distinct agrochemical carriers and site-targeted or regulated nutrition delivery with improved crop protection. The potential of nanomaterials offers a new green revolution in sustainable agriculture.

References

  1. Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. Understanding the role of nanomaterials in agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Singh, H.B., Prabha, R.,Eds.; Springer: New Delhi, India; 2016. pp. 271-88. https://doi.org/10.1007/978-81-322-2644-4_17
  2. Mukhopadhyay SS. Nanotechnology in agriculture: prospects and constraints. Nanotechnology, Science and Applications. 2014 Aug 4;63-71. https://doi.org/10.2147/NSA.S39409
  3. Yunlong C, Smit B. Sustainability in agriculture: a general review. Agriculture, Ecosystems and Environment. 1994 Jul 1;49(3):299-307. https://doi.org/10.1016/0167-8809(94)90059-0
  4. Khan MR, Rizvi TF. Nanotechnology: scope and application in plant disease management. Plant Pathol J. 2014;13(3):214-31. https://doi.org/10.3923/ppj.2014.214.231
  5. Ashraf SA, Siddiqui AJ, Abd Elmoneim OE, Khan MI, Patel M, Alreshidi M, et al. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment. 2021 May 10;768:144990. https://doi.org/10.1016/j.scitotenv.2021.144990
  6. Dhoondia ZH, Chakraborty H. Lactobacillus mediated synthesis of silver oxide nanoparticles. INTECH. 2012;(2):1?5. https://doi.org/10.5772/55741
  7. Kenneth KY, Wong K, Xuelai LX. Silver nanoparticles—the real “silver bullet” in clinical medicine. J Med Chem Commun. 2010;(1):125?31. https://doi.org/10.1039/c0md00069h
  8. He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis. 2019 Jan 1;27(1):1-21. https://doi.org/10.1016/j.jfda.2018.12.002
  9. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Collide Surface B:Biointerf. 2003;28(4):313?18. https://doi.org/10.1016/S0927-7765(02)00174-1
  10. Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science. 2003;(85):162-70.
  11. Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, sesuvium portulacastrum. Colloid and Surfaces B. 2010;(79):488?93. https://doi.org/10.1016/j.colsurfb.2010.05.018
  12. Park TJ, Lee KG, Lee SY. Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology. 2016 Jan;100:521-34. [CrossRef] [PubMed] https://doi.org/10.1007/s00253-015-6904-7
  13. El-Seedi HR, El-Shabasy RM, Khalifa SA, Saeed A, Shah A, Shah R, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms and applications. RSC Adv. 2019;9(42):24539-59. https://doi.org/10.1039/C9RA02225B
  14. Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A. Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol. 2016;6:29. https://doi.org/10.5772/62644
  15. Asiya SI, Pal K, Kralj S, El-Sayyad GS, de Souza FG, Narayanan T. Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater Today Chem. 2020;17:100327. https://doi.org/10.1016/j.mtchem.2020.100327
  16. Jampílek J, Krá?ová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S. 2015 Sep 1;22(3):321-61. https://doi.org/10.1515/eces-2015-0018
  17. Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi efficiency, systemic properties and novel delivery methods for pest insect control: what we know so far. Frontiers in Physiology. 2016 Nov 17;7:553. https://doi.org/10.3389/fphys.2016.00553
  18. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Science. 2010 Sep 1;179(3):154-63. https://doi.org/10.1016/j.plantsci.2010.04.012
  19. Nuruzzaman MD, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry. 2016 Feb 24;64(7):1447-83. https://doi.org/10.1021/acs.jafc.5b05214
  20. Pandey G. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology and Innovation. 2018 Aug 1;11:299-307. https://doi.org/10.1016/j.eti.2018.06.012
  21. Kale AP, Gawade SN. Studies on nanoparticle induced nutrient use efficiency of fertilizer and crop productivity. Green Chem Technol Lett. 2016 Apr 7;2(2):88-92. https://doi.org/10.18510/gctl.2016.226
  22. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J. Nano-fertilizers and their smart delivery system. Nanotechnologies in Food and Agriculture. 2015;81-101. https://doi.org/10.1007/978-3-319-14024-7_4
  23. Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae. 2014 Aug 15;175:1-8. https://doi.org/10.1016/j.scienta.2014.05.021
  24. Heffer P, Prud’homme M. Fertilizer outlook 2012–2016. In: 80th IFA Annual Conference; 2012 May. pp. 21-23.
  25. Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering. 2019 Dec;4:1-5. https://doi.org/10.1007/s41204-019-0058-2
  26. Miao YF, Wang ZH, Li SX. Relation of nitrate N accumulation in dryland soil with wheat response to N fertilizer. Field Crops Research. 2015;170:119-30. https://doi.org/10.1016/j.fcr.2014.09.016
  27. Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M. Synthesis and characterization of zeolite based nano–composite: An environment friendly slow release fertilizer. Microporous and Mesoporous Materials. 2016 Sep 15;232:174-83. https://doi.org/10.1016/j.micromeso.2016.06.020
  28. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. Nanotechnologies in Food and Agriculture. 2015;69-80. https://doi.org/10.1007/978-3-319-14024-7_3
  29. Liu J, Zhang YD, Zhang ZM. The application research of nano-biotechnology to promote increasing of vegetable production. Hubei Agricultural Sciences. 2009;1:20-25.
  30. Millán G, Agosto F, Vázquez M, Botto L, Lombardi L, Juan L. Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr. 2008 Sep 1;35(3):293-302. https://doi.org/10.4067/S0718-16202008000300007
  31. Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research. 2016 Mar 2;14(1):e0902. https://doi.org/10.5424/sjar/2016141-8205
  32. Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils. 2016 Apr;52:423-37. https://doi.org/10.1007/s00374-015-1073-5
  33. Swaminathan S, Edward BS, Kurpad AV. Micronutrient deficiency and cognitive and physical performance in Indian children. European Journal of Clinical Nutrition. 2013 May;67(5):467-74. https://doi.org/10.1038/ejcn.2013.14
  34. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S. Responsive polymers for crop protection. Polymers. 2010 Aug 19;2(3):229-51. https://doi.org/10.3390/polym2030229
  35. Ul Haq I, Ijaz S. Use of metallic nanoparticles and nanoformulations as nanofungicides for sustainable disease management in plants. Nanobiotechnology in Bioformulations. 2019;289-316. https://doi.org/10.1007/978-3-030-17061-5_12
  36. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R. Nano-biofungicides: emerging trend in insect pest control. Advances and Applications Through Fungal Nanobiotechnology. 2016;307-19. https://doi.org/10.1007/978-3-319-42990-8_15
  37. Ghidan AY, Al-Antary TM, Awwad AM, Ayad JY. Physiological effect of some nanomaterials on pepper (Capsicum annuum L.) plants. Fresenius Environ Bull. 2018;27(11):7872-78.
  38. Dubey A, Mailapalli DR. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. Sustainable Agriculture Reviews. 2016;19:307-30. https://doi.org/10.1007/978-3-319-26777-7_7
  39. Onaga G, Wydra K. Advances in plant tolerance to abiotic stresses. Plant Genomics. 2016 Jul 14;10(9):229-72. https://doi.org/10.5772/64350
  40. Torabian S, Zahedi M, Khoshgoftar AH. Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. Journal of Plant Nutrition. 2017 Mar 16;40(5):615-23 https://doi.org/10.1080/01904167.2016.1240187
  41. Wang ZH, Miao YF, Li SX. Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China. Field Crops Research. 2015 Nov 1;183:211-24. https://doi.org/10.1016/j.fcr.2015.07.019
  42. Wang S, Wang F, Gao S, Wang X. Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water, Air and Soil Pollution. 2016 Jul;227:1-3. https://doi.org/10.1007/s11270-016-2928-6
  43. Gupta A, Dubey P, Kumar M, Roy A, Sharma D, Khan MM, et al. Consequences of arsenic contamination on plants and mycoremediation-mediated arsenic stress tolerance for sustainable agriculture. Plants. 2022;11(23):3220. https://doi.org/10.3390/plants11233220
  44. Cheng HN, Klasson KT, Asakura T, Wu Q. Nanotechnology in agriculture. In: Nanotechnology: Delivering on the Promise. American Chemical Society; 2016.2:pp. 233-42. https://doi.org/10.1021/bk-2016-1224.ch012
  45. Ghorbanpour M, Fahimirad S. Plant nanobionics a novel approach to overcome the environmental challenges. Medicinal Plants and Environmental Challenges. 2017;247-57. https://doi.org/10.1007/978-3-319-68717-9_14
  46. Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non?viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co?delivery of Cas9 mRNA and sgRNA. Angewandte Chemie. 2017 Jan 19;129(4):1079-83. https://doi.org/10.1002/ange.201610209
  47. Wang S, Wang F, Gao S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research. 2015 Feb;22:2837-45. https://doi.org/10.1007/s11356-014-3525-0
  48. Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir. 2006 Jan 17;22(2):736-41. https://doi.org/10.1021/la052055q
  49. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine. 2012 Dec 1;2(12):953-59. https://doi.org/10.1016/S2221-1691(13)60006-4
  50. Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. Journal of Nanoparticle Research. 2009 Feb;11:279-88. https://doi.org/10.1007/s11051-008-9378-z
  51. Beveridge TJ, Murray RG. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology. 1980 Feb;141(2):876-87. https://doi.org/10.1128/jb.141.2.876-887.1980
  52. Saifuddin N, Wong CW, Yasumira AN. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry. 2009;6(1):61-70. https://doi.org/10.1155/2009/734264
  53. Cunningham DP, Lundie Jr LL. Precipitation of cadmium by Clostridium thermoaceticum. Applied and Environmental Microbiology. 1993 Jan;59(1):7-14. https://doi.org/10.1128/aem.59.1.7-14.1993
  54. Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, et al. Biosorption and bioreduction of diamine silver complex by Corynebacterium. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology. 2005 Mar;80(3):285-90. https://doi.org/10.1002/jctb.1191
  55. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science. 2000 Dec 1;290(5497):1744-47. https://doi.org/10.1126/science.290.5497.1744
  56. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Applied and Environmental Microbiology. 1999 Nov 1;65(11):4734-40. https://doi.org/10.1128/AEM.65.11.4734-4740.1999
  57. Kashefi K, Tor JM, Nevin KP, Lovley DR. Reductive precipitation of gold by dissimilatory Fe (III)-reducing bacteria and archaea. Applied and Environmental Microbiology. 2001 Jul 1;67(7):3275-79. https://doi.org/10.1128/AEM.67.7.3275-3279.2001
  58. Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB. Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth and Planetary Science Letters. 2006 Sep 30;249(3-4):444-55. https://doi.org/10.1016/j.epsl.2006.06.036
  59. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chemistry and Biology. 2004 Nov 1;11(11):1553-59. https://doi.org/10.1016/j.chembiol.2004.08.022
  60. Mahanty A, Bosu RA, Panda P, Netam SP, Sarkar B. Microwave assisted rapid combinatorial synthesis of silver nanoparticles using E. coli culture supernatant. Int J Pharm Bio Sci. 2013;4(2):1030-35.
  61. Ghorbani HR. Biosynthesis of silver nanoparticles by Escherichia coli. Asian Journal of Chemistry. 2013 Mar 1;25(3). https://doi.org/10.14233/ajchem.2013.12805
  62. Du L, Jiang H, Liu X, Wang E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5? and its application on direct electrochemistry of haemoglobin. Electrochemistry Communications. 2007 May 1;9(5):1165-70. https://doi.org/10.1016/j.elecom.2007.01.007
  63. Deplanche K, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnology and Bioengineering. 2008 Apr 1;99(5):1055-64. https://doi.org/10.1002/bit.21688
  64. Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell Factories. 2013 Dec;12:1-6. https://doi.org/10.1186/1475-2859-12-75
  65. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Archives of Microbiology. 1995 Feb;163:143-47. https://doi.org/10.1007/s002030050184
  66. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry. 2007 May 1;42(5):919-23. https://doi.org/10.1016/j.procbio.2007.02.005
  67. Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design. 2002 Jul 3;2(4):293-98. https://doi.org/10.1021/cg0255164
  68. Prasad K, Jha AK, Kulkarni AR. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters. 2007 May;2:248-50. https://doi.org/10.1007/s11671-007-9060-x
  69. Philipse AP, Maas D. Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir. 2002 Dec 10;18(25):9977-84. https://doi.org/10.1021/la0205811
  70. Manivasagan P, Ven atesan J, Senthil umar K, Siva umar K, Kim SK. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Microbiol Res. 2013;1-9. https://doi.org/10.1155/2013/287638
  71. Lengke MF, Fleet ME, Southam G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)? thiosulfate and gold (III)? chloride complexes. Langmuir. 2006 Mar 14;22(6):2780-87. https://doi.org/10.1021/la052652c
  72. Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007 Jul 1;67(3-4):1003-06. https://doi.org/10.1016/j.saa.2006.09.028
  73. Rajasree SR, Suman TY. Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pacific Journal of Tropical Disease. 2012 Jan 1;2:S796-99. https://doi.org/10.1016/S2222-1808(12)60267-9
  74. Thamilselvi V, Radha KV. Synthesis of silver nanoparticles from Pseudomonas putida NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology. Digest Journal of Nanomaterials and Biostructures (DJNB). 2013 Jul 1;8(3).
  75. Haefeli C, Franklin CH, Hardy K. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Journal of Bacteriology. 1984 Apr;158(1):389-92. https://doi.org/10.1128/jb.158.1.389-392.1984
  76. Bai HJ, Zhang ZM, Gong J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnology Letters. 2006 Jul;28:1135-39. https://doi.org/10.1007/s10529-006-9063-1
  77. He S, Zhang Y, Guo Z, Gu N. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnology Progress. 2008 Mar;24(2):476-80. https://doi.org/10.1021/bp0703174

Downloads

Download data is not yet available.