This is an outdated version published on 23-10-2024. Read the most recent version.
Forthcoming

Effects of acute gamma irradiation on the morphology of Curcuma alismatifolia ‘Siam Shadow’ and C. alismatifolia ‘Siam Scarlet’

Authors

DOI:

https://doi.org/10.14719/pst.3049

Keywords:

Acute gamma rays, Curcuma alismatifolia ‘Siam Shadow’, C. alismatifolia ‘Siam Scarlet’, LD50, Mutation

Abstract

Curcuma alismatifolia (Pathumma in Thailand), also known as Siam Tulip, is an economically valuable cut flower in Thailand and is continuously bred to enhance its captivating array of colors. This study aimed to investigate the effects of acute gamma irradiation on 2 cultivars of C. alismatifolia ‘Siam Shadow’ and C. alismatifolia ‘Siam Scarlet’ for in vitro propagation and determination of the lethal dose 50 (LD50). The irradiation was conducted at doses of 0, 20, 30, 40 and 80 Gy using young shoots tissue culture. The results of the experiment revealed that the LD50 for ‘Siam Shadow’ could not be determined while ‘Siam Scarlet’ was 29.06 Gy. ‘Siam Shadow’ exhibited chimera leaf formation when exposed to a gamma irradiated dose of 40 Gy, while ‘Siam Scarlet’ exhibited chimera leaf formation when gamma irradiated at doses of 20 Gy in vitro. After planting in a greenhouse, ‘Siam Shadow’ was irradiated with 30 Gy of gamma irradiated, had reduced bract numbers and the bracts became smaller. Conversely, ‘Siam Scarlet’ irradiated with 20 Gy of gamma irradiated, produced smaller inflorescences with only 2 bracts, while irradiation with 30 Gy resulted in 2 lobes and spotted leaves at the edges of the leaves. The results indicated that both the C. alismatifolia cultivars and gamma irradiation rates had a significant influence on survival rate, number of shoots, plant height, chlorophyll mutants and morphology. As the outcome, it was determined that gamma irradiation with optimum doses of gamma rays could induce new characteristics in C. alismatifolia.

Downloads

Download data is not yet available.

References

Tosri C, Chusreeaeom K, Limtiyayotin M, Sukin N, Jompuk P. Comparative effect of high energy electron beam and 137Cs gamma ray on survival, growth and chlorophyll content in curcuma hybrid ‘Laddawan’ and determine proper dose for mutations breeding. EJFA. 2019;31(5):321-27. https://doi.org/10.9755/ejfa.2019.v31.i5.1942

Taychasinpitak T, Sreeboonraung S, Wongpiyasatid A, Lekawatana S. Effects of chronic gamma irradiation on mutations of weeping fig (Ficus benjamina var. variegata). Agricultural Sci J (Thailand). 2007;38(2):143-49.

Sumyo S, Athalangrong A. [Internet]. Department of Agriculture Extension online; 2017 Sep 15 [cited 2023 Jan 1]. Available from: https://www.doa.go.th/hort/wpcontent/uploads/ 2021/11/

KP Holland. Growing and breeding Curcuma online [Internet]. KP Holland online; 2020 Mar 1 [cited 2023 Jan 20]. Available from: https://www.kpholland.nl/en/breeding/siam-curcuma/

Keawbua K, Nualmanee R, Ruamrungsri S, Hongpakdee P. Development of Curcuma Hybrids cv. ‘Doi Tung Red’ as Potted Plant by Paclobutrazol Drenching. Khon Kaen AGR J. 2018;46(SUPPL.1):375-80.

Teerakathiti T, Phaepoon W, Kongkaew P. The process of using disease-free Pathumma plant pseudo-stems with increasing the number of shoots [Internet]. Ipthailand online; 2013 Aug 31 [cited 2022 Sep 9]. Available from: https://search.ipthailand.go.th/

Ketmaro S, Taychasinpitak T, Mongkolchaiyaphruek A, Wongchaochant S. Effect of colchicine on increasing pollen viability in a Curcuma hybrid (Curcuma sparganiifolia × C. parviflora). Kasetsart J Nat Sci. 2012;46:363-70.

Ye Y, Zhou Y, Tan J, Zhu G, Liu J, Xu Y. Cross-Compatibility in Interspecific Hybridization of Different Curcuma Accessions. Plants. 2023;12(10):1961. https://doi.org/10.3390/plants12101961

Majeed A, Muhammad Z, Ullah R, Ali H. Gamma irradiation i: effect on germination and general growth characteristics of plants–a review. Pak J Bot. 2018;50(6):2449-53.

Abdullah TL, Johari E, Mohd N. Changes in flower development, chlorophyll mutation and alteration in plant morphology of Curcuma alismatifolia by gamma irradiation. Am J Appl Sci. 2009;6(7):1436-39. https://doi.org/10.3844/ajassp.2009.1436.1439

Taheri S, Abdullah TL, Ahmad Z, Abdullah NAP. Effect of acute gamma irradiation on Curcuma alismatifolia varieties and detection of DNA polymorphism through SSR marker. Biomed Res Int. 2014. 2014;18. https://doi.org/10.1155/2014/631813

Phakpaknam S, Yunchum N, Dechkla M, Pikunthong V. In vitro micropropagation and microrhizome induction of Curcuma comosa Roxb. RMUTP Research Journal. 2022;16(2): 13-23. https://doi.org/10.14456/jrmutp.2022.18

Sirirugsa P, Larsen K, Maknoi C. The genus Curcuma L. (Zingiberaceae): distribution and classification with reference to species diversity in Thailand. Tan BC, Leong-Skornickova J, editors. In: Proceedings of the 4th International Ginger Symposium; 2006 Jul 3-6; Singapore. The Gardens’ Bulletin; 2007. P.203-20.

Cayamarit K, Balslev H, Newman MF, Sangvirotjanapat S. e-Flora of Thailand Volume 16, Part 2: Zingiberaceae: [e-book]. Forest Herbarium (BKK): Royal Forest Department; 2023 [cited 2023 Sep 20]: 145. Available from: https://botany.dnp.go.th/eflora/floragenus.html?factsheet=Curcuma.

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97.

Limtiyayothin M, Taychasinpitak T, Jompuk P. Gamma ray-induced in vitro mutations in bromeliad: Tillandsia cyanea. Khon Kaen AGR J. 2018;46(5):983-90.

Kashima S, Thanananta T, Kachonpadungkitt Y, Bodhipadma K. Induced mutation in Musa acuminata genomes AAA using gamma ray and determination with HAT-RAPD marker. TJST. 2020;9(5):669-79. https://doi.org/10.14456/tjst.2020.71

Beyaz R, Kahramanogullari CT, Yildiz C, Darcin ES, Yildiz M. The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. under in vitro conditions. J Environ Radio Act. 2016;162:129-33. https://doi.org/10.1016/j.jenvrad. 2016.05.006

Beyaz R. Impact of gamma irradiation pretreatment on the growth of common vetch (Vicia sativa L.) seedlings grown under salt and drought stress. Int J Radiat Biol. 2020;96(2):257-66. https://doi.org/10.1080/09553002.2020.1688885

Sittinisaisukand S, Taychasinpitak T, Jompuk P, Chanchula N. Effect of acute gamma irradiation on in vitro culture of Lindernia spp. TJST. 2018;7(2):159-68. https://doi.org/10.14456/tjst.2018.25

Gang L, Xiaoying Z, Yiging Z, Qingcheng Z, Xun X, Jiashu C. Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and TAPD markers. PCTOC. 2007;88;319-27. https://doi.org/10.1007/s11240-006-9189-9

Jan S, Parween T, Hameed R, O Siddiqi T. Effects of presowing gamma irradiation on the photosynthetic pigments, sugar content and carbon gain of Cullen corylifolium (L.) Medik. Chil J Agric Res. 2013;73(4):345-50.

https://doi.org/10.4067/S0718-58392013000400003

Veeraborirak P, Taychasinpitak T, Sukprasert P, Piriyaphattarakit A. Effect of gamma irradiation on morphological of character Curcuma Hybrid. Agricultural Sci J (Thailand). 2020;9(3):243-50.

Venketeswaran S, Partanen CR. A comparative study of the effects of gamma radiation on organized and disorganized growth of tobacco. Radiat Bot. 1966;6(1):13-20. https://doi.org/10.1016/S0033-7560(66)80089-3

Chanchula N. Mutational induction in Globba williamsianaby Gamma irradiation. TJST. 2013;2(1):45-52. https://doi.org/10.14456/tjst.2013.7

Wongpiyasatid A. Mutation: for plant breeding. 1st ed. Bangkok: Kasetsart University press; 2017.

Ulukapi K, Ozmen SF. Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. JRRAS. 2018;11(2):157-61. https://doi.org/10.1016/j.jrras.2017.12.004

Volkova PY, Duarte GT, Soubigou?Taconnat L, Kazakova EA, Pateyron S, Bondarenko VS, et al. Early response of barley embryos to low?and high?dose gamma irradiation of seeds triggers changes in the transcriptional profile and an increase in hydrogen peroxide content in seedlings. J Agron Crop Sci. 2020;206(2):277-95. https://doi.org/10.1111/ jac.12381

Wi SG, Chung BY, Kim JS, Kim JH, Baek MH, Lee JW, et al. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron. 2007;38(6):553-64. https://doi.org/10.1016/j.micron.2006.11.002

Padungsil N, Taechasinpitak T, Wongchowchan S, Chanchula N. Mutational induction in Catharanthus roseus L. by acute gamma irradiation. TJST. 2015;4(1):95-103. https://doi.org/10.14456/tjst.2015.4

Taktuea S, Taychasinpitak T, Sukprasert P, Piriyaphattarakit A, Balla N. Effect of acute gamma irradiation on Gomphrena Hybrid in vitro. TJST. 2018;7(6):605-13. https://doi.org/10.14456/tjst.2018.59

Kim JH, Baek MH, Chung BY, Wi SG, Kim JS. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J Plant Biol. 2004;47:314-21. https://doi.org/10.1007/ BF03030546

Kongprakhon P, Jitbumrong N. Utilization of gamma-rays induced morphology changes in miniature rose (Rosa chinensis Jacq. var. minima Voss). Khon Kaen AGR J. 2017; 45(SUPPL.1):1296-302.

Pangjai W, Huehne-Srifah P. Gamma-ray induced morphological changes in rain lily (Zephyranthes spp.). Khon Kaen AGR J. 2021;49(3):643-55.

Lamseejan S. Plant Mutation. Bangkok: Kasetsart University Press;1997.

Chanchula N, Jala A. Mutational Induction in Pinguicula sp. by Gamma Irradiation. TJST. 2014;3(2):76-81. https://doi.org/10.14456/tjst.2014.6

Muhallilin I, Aiyah SI, Sukma D. The diversity of morphological characteristics and chemical content of Celosia cristata plantlets due to gamma ray irradiation. Biodiversitas Journal of Biological Diversity. 2019;20(3):862-66. https://doi.org/10. 13057/biodiv/d200333

Jo YD, Kim SH, Hwang JE, Kim YS, Kang HS, Kim SW, et al. Construction of mutation populations by gamma-ray and carbon beam irradiation in chili pepper (Capsicum annuum L.). Hortic Environ Biotechnol. 2016;57:606-14. https://doi.org/10. 1007/s13580-016-1132-3

Shin JM, Kim BK, Seo SG, Jeon SB, Kim JS, Jun BK, et al. Mutation breeding of sweet potato by gamma-ray radiation. Agric Nat Resour. 2011;6(6):1447-54.

Lamseejan S, Peeranuch J, Arunee W, Surin D, Prapanpongse K. Gamma-rays induced morphological changes in chrysanthemum. (Chrysanthemum morifolium). Nat Sci. 2000;34(3):417-22.

Topoonyanont, N, Jaikanta S, Boonmanee P. Curcuma alismatifolia Gagnep. micropropagation in twin-flasks temporary immersion bioreactor. In: van den Ende JE, Krikke AT, den Nijs APM, editors. ISHS Board: In: Proceedings of the X International Symposium on Flower Bulbs and Herbaceous Perennials 886; 2008 Apr 20-24; Netherlands. Lisse; Acta Horticulturae, 2008. p. 267-71. https://doi.org/10.17660/ActaHortic.2011.886.37

Published

23-10-2024

Versions

How to Cite

1.
Pikulthong V, Inboon S, Ariya S, Boonman N, Wanna C, Wongwiwat P, Phakpaknam S. Effects of acute gamma irradiation on the morphology of Curcuma alismatifolia ‘Siam Shadow’ and C. alismatifolia ‘Siam Scarlet’. Plant Sci. Today [Internet]. 2024 Oct. 23 [cited 2024 Nov. 24];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3049

Issue

Section

Research Articles