A Sustainable Agriculture Method Using Biofertilizers: An Eco-Friendly Approach

Authors

DOI:

https://doi.org/10.14719/pst.3094

Keywords:

Biofertilizer, Soil microbes, Sustainable agriculture, Mycorrhizal fungi

Abstract

Biofertilizers symbolize a promising and eco-friendly approach to increasing agricultural productivity while reducing the hazardous environmental impact of chemical fertilizers. Biofertilizers are compounds containing living microorganisms or their byproducts that, when applied to soil, enhance nutrient uptake and promote plant growth. These biological agents include nitrogen-fixing bacteria, mycorrhizal fungi, and phosphate-solubilizing microorganisms. Biofertilizers are well recognized for their composition, cost-effectiveness, and environment-friendly nature. These are safe substitutes for hazardous synthetic fertilizers. They contribute to soil health and biodiversity conservation by enriching the soil with beneficial microorganisms. This review provides an overview of biofertilizers, their significance in modern agriculture, and their potential to promote sustainable farming practices.

Downloads

Download data is not yet available.

References

Mia MB, Shamsuddin Z. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol. 2010;9:6001-6009.

Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009;84:11-18.

Sprent JI, Sprent P. Nitrogen ?xing organisms: Pure and applied aspects. Nitrogen Fixing Org. 1990;19:288.

Rana R, Kapoor R, Pooja. Biofertilizers and their role in agriculture. Popular Kheti. 2013;1:56-61.

Youssef M, Eissa M. Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharm Res. 2014;5:1-6.

Umesha S, Singh PK, Singh RP. Microbial biotechnology and sustainable agriculture. In: Biotechnology for Sustainable Agriculture. Elsevier: Amsterdam, The Netherlands. 2018; pp. 185-205.

Agri U, Chaudhary P, Sharma A, Kukreti B. Physiological response of maize plants and its rhizospheric microbiome under the in?uence of potential bioinoculants and nano chitosan. Plant Soil. 2022;474:451-468.

Wani SP, Lee KK. Population dynamics of nitrogen-fixing bacteria associated with pearl millet (P.americanum L.). In: Biotechnology of Nitrogen Fixation in the Tropics. University of Pertanian, Malaysia. 2013;21-30.

Pandey J, Singh A. Opportunities and constraints in organic farming: An Indian perspective. J Sci Res. 2012;56:47-72.

Board N. The complete technology book on biofertilizer and organic farming. National Institute of Industrial Research. Delhi, India; 2004.

Choudhury A, Kennedy I. Prospects and potentials for systems of biological nitrogen ?xation in sustainable rice production. Biol Fertil Soils. 2004;39:219-227.

Chang CH, Yang SS. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol. 2009;100:1648-58.

Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth and future prospects. A review. J Soil Sci Plant Nutr. 2017;17:897-911.

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al. Plant growth promoting rhizobacteria: Context, mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473.

Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol. 2017;8:2593.

Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012;35:1044-1051. https://doi.org/10.1590/S1415-47572012000600020.

Tahir HAS, Gu Q, Wu HJ, Raza, W, Hanif A, Wu LM et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol. 2017;8:11. https://doi.org/10.3389/fmicb.2017.00171.

Yadav AN, Verma, P, Kumar S, Kumar V, Kumar M, Kumari S. Actinobacteria from rhizosphere in new and future developments in microbial biotechnology and bioengineering. 2018; https://doi.org/10.1016/B978-0-444-63994-3.00002-3.

Abadi VAM, Sepehri M, Khatabi B, Rezaei, M. Alleviation of zinc de?ciency in wheat inoculated with root endophytic fungus Piriformospora indica and Rhizobacterium, Pseudomonas putida. Rhizosphere. 2021;17:100311. https://doi.org/10.1016/j.rhisph.2021.100311.

Kohl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci. 2019;10:845. https://doi.org/10.3389/fpls.2019.00845.

Brahmaprakash G, Sahu PK. Biofertilizers for sustainability. J Indian Inst Sci. 2012;92:37-62.

Pathak D, Kumar M, Rani K. Biofertilizer application in horticultural crops. In: Microorganisms for Green Revolution. Springer: Berlin/Heidelberg, Germany. 2017; pp. 215-227.

Thomas L, Singh I. Microbial biofertilizers: Types and applications. In: Biofertilizers for Sustainable Agriculture and Environment. Springer: Berlin/Heidelberg, Germany. 2019; pp. 1-19.

Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: Apreciousbio-resource in agriculture, ecosystem and environmental sustainability. Front Microbiol. 2016;7:529.

Kobae Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front Environ Sci. 2019;6:159. https://doi.org/10.3389/fenvs.2018.00159.

Hashem MA, Nur-A-Tomal MS, Mondal NR, Rahman MA. Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ Chem Lett. 2017;15: pp. 501-06. https://doi.org/10.1007/s10311-017-0634-2.

Kloepper JW, Leong J, Teintze M, Schroth MN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 1980;286:885-886.

Don Y, Schmidtke SM, Gambetta LM. Aureobasidium pullulans volatilome identi?ed by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea, and Alternaria alternata in vitro. Sci Rep 2020;10:4498. https://doi.org/10.1038/s41598-020-61471-8.

Hassan EA, Yasser S, Mostafa A, Mohamed H, Nivien AN. Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents. Plants. 2021;12:2737. https://doi.org/10.3390/plants10122737.

You WJ, Ge CH, Jiang ZC, Chen MM, Li W, Shao YZ. Screening of a broad-spectrum antagonist-Bacillus siamensis and its possible mechanisms to control postharvest disease in tropical fruits. Biol Control. 2021;157:104584. https://doi.org/10.1016/j.biocontrol.2021.104584.

Mishra S, Arora NK. Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tools for Xanthomonas campestris pv campestris. World J Microbiol Biotechnol. 2012;28:693-702. https://doi.org/10.1007/s11274-011-0 865-5.

Taha RS, Seleiman MF, Shami A, Alhammad BA, Mahdi AHA. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system, and yield of wheat grown in salt-stressed soil. Plants. 2021;10:1040. https://doi.org/10.3390/plants1006 1040

Sdiri et al. Biocontrol ability and production of volatile organic compounds as a potential mechanism of action of olive endophytes against Colletotrichum acutatum.Microorganisms. 2022;10(3):571. https://doi.org/10.3390/microorganisms10030571.

Zain M, Yasmin S, Hafeez FY. Isolation and characterization of plant growth promoting antagonistic bacteria from cotton and sugarcane plants for suppression of phytopathogenic Fusarium species. Iran J Biotechnol. 2019;17:e1974. https://doi.org/10.21859/ijb.1974.

Anand A, Chinchilla D, Tan C, Mene-Sa?rane L, Haridon F, Weisskopf L. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms. 2020;8:1144. https://doi.org/10.3390/microorganisms8081144.

Yu Z, Wang Z, Zhang Y, Wang Y, Liu Z. Biocontrol and growth-promoting e?ect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiol Res. 2021;242:e126596. https://doi.org/10.1016/j.micres.2020.126596.

Sundaramoorthy S, Balabaskar P. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J Appl Biol Biotechnol. 2013;1:36-40.

Chaudhary A, Parveen H, Chaudhary P, Khatoon H, Bhatt P, et al. Rhizospheric microbes and their mechanism. Microbial Technology for Sustainable Environment.eds (Singapore: Springer). 2021; https://doi.org/10.1007/978-981-16-3840-46.

Sujayanand GK, Akram M, Konda A, Nigam A, Bhat S, Dubey J et al. Distribution and toxicity of Bacillus thuringiensis (Berliner) strains from di?erent crop rhizosphere in Indo-Gangetic plains against polyphagous lepidopteran pests. Int J Trop Insect Sci. 2021;41:2713-2731. https://doi.org/10.1007/s42690-021-00451-5.

Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, et al. Inner plant values: Diversity, colonization, and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552. https://doi.org/10.3389/fmicb.2017.02552.

Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms. 2017;5:77. https://doi.org/10.3390/microorganisms5040077.

Cataldo E, Fucile M, Mattii GB. Biostimulants in viticulture: A sustainable approach against biotic and abiotic stresses. Plants. 2022;11:162. https://doi.org/10.3390/plants11020162.

Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J et al. Induced systemic resistance (ISR) and Fe de?ciency responses in dicot plants. Front Plant Sci. 2019;10:287. https://doi.org/10.3389/fpls.2019.00287.

Oukala N, Aissat K, Pastor V. Bacterial endophytes: The hidden actor in plant immune responses against biotic stress. Plants. 2021;10:1012. https://doi.org/10.3390/plants10051012.

Hasan N, Farzand A, Heng Z, Khan IU, Moosa A, Zubair M et al. Antagonistic potential of novel endophytic Bacillus strains and mediation of plant defense against Verticillium wilt in upland cotton. Plants. 2020;9:1438. https://doi.org/10.3390/plants9111438.

Ayaz M, Ali Q, Farzand A, Khan A, Ling H, Gao X. Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. Int J Mol Sci. 2021;22:5049. https://doi.org/10.3390/ijms22095049.

Nie P, Chen C, Yin Q, Jiang C, Guo J, Zhao H, et al. Function of miR825 and miR825 as negative regulators in Bacillus cereus AR156-elicited systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Int J Mol Sci. 2019;20:5032. https://doi.org/10.3390/ijms20205032.

Desrut A, Moumen B, Thibault F, Le Hir R, Coutos-Thevenot P, Vriet C. Bene?cial rhizobacteriaPseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. J Exp Bot. 2020;71:7301-7315. https://doi.org/10.1093/jxb/eraa396.

Daroodi Z, Taheri PS. Direct antagonistic activity and tomato resistance induction of the endophytic fungus Acrophialophorajodhpurensis against Rhizoctonia solani. Biol Control. 2021;160:104696. https://doi.org/10.1016/j.biocontrol.2021.104696.

Gonzalez-Lopez MDC, Jijon-Moreno S, Dautt-Castro M, OvandoVazquez C, Ziv T, Horwitz BA et al. Secretome analysis of Arabidopsis-Trichoderma atroviride interaction unveils new roles for the plant glutamate: glyoxylate aminotransferase GGAT1 in plant growth induced by the fungus and resistance against Botrytis cinerea. Int J Mol Sci. 2021;22:6804. https://doi.org/10.3390/ijms22136804.

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23:2690. https://doi.org/10.3390/ijms23052690.

Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L et al. Linking plant secondary metabolites and plant microbiomes: A review. Front Plant Sci. 2021;12:621276. https://doi.org/10.3389/fpls.2021.621276.

Hummadi EH, Cetin Y, Demirbek M, Kardar NM, Khan S, Coates CJ et al. Antimicrobial volatiles of the insect pathogen Metarhizium brunneum. J Fungi. 2022;22:326. https://doi.org/10.3390/jof8040326.

Yang Y, Chen Y, Cai J, Liu X, Huang G. Antifungal activity of volatile compounds generated by endophytic fungiSarocladiumbrachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS ONE. 2021;16:e0260747. https://doi.org/10.1371/journal.pone.0260747.

Hennessy LM, Popay AJ, Glare TR. Olfactory responses of Argentine stem weevil to herbivory and endophyte-colonisation in perennial ryegrass. J Pest Sci. 2022;95:263-77. https://doi.org/10.1007/s10340-021-01375-2.

Sharma N, Khanna K, Manhas RK, Bhardwaj R, Ohri P, Alkahtani J et al. Insights into the role of Streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer, and biocontrol agent against Meloidogyne incognita in Solanum lycopersicum seedlings. Plants. 2020;9:1109. https://doi.org/10.3390/plants9091109.

Chen Z, Zhao L, Dong Y, Chen W, Li C, Gao X et al. The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. PLoS ONE. 2021;16:e0256807. https://doi.org/10.1371/journal.pone.0256807.

Reghmit A, Benzina-tihar F, Escudero FJL, Halouane-Sahir F, Oukali Z, Bensmail S et al. Trichoderma spp. isolates from the rhizosphere of healthy olive trees in Northern Algeria and their biocontrol potentials against the olive wilt pathogen, Verticillium dahliae. Org Agric. 2021;11:639-57. https://doi.org/10.1007/s13165-021-00371-1.

Nandini B, Puttaswamy H, Saini RK, Prakash HS, Geetha N. Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci Rep. 2021;11:9517. https://doi.org/10.1038/s41598-021-89061-2.

Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y et al. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms. 2022;10:1072. https://doi.org/10.3390/microorganisms10051072.

Samain E, Aussenac T, Selim S. The effect of plant genotype, growth stage and Mycosphaerellagraminicola strains on the efficiency and durability of wheat-induced resistance by Paenibacillus sp. strain B2. Front Plant Sci. 2019;10:587. https://doi.org/10.3389/fpls.2019.00587.

Portieles R, Xu H, Yue Q, Zhao L, Zhang D, Du L et al. Heat-killed endophytic bacterium induces robust plant defense responses against important pathogens. Sci Rep. 2021;11:12182. https://doi.org/10.1038/s41598-021-91837-5.

Al?nc T, Cusumano A, Peri E, Torta L, Colazza S. Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezaraviridula feeding activity. J Chem Ecol. 2021;47:455-462. https://doi.org/10.1007/s10886-021-01260-3.

Sanchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Dianez F. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. J Fungi. 2021;24:7. https://doi.org/10.3390/jof7080598.

Lata R, Chowdhury S, Gond SK, White JF. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol. 2018;66:268-76. https://doi.org/10.1111/lam.12855.

Fasusi OA, Cruz C, Babalola OO. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture. 2021;11:163. https://doi.org/10.3390/agriculture11020163.

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR. Gibberellin-secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem. 2014;84:115-24. https://doi.org/10.1016/j.plaphy.2014.09.001.

Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, et al. Exploring microbial resource of different rhizocompartments of dominant plants along the salinity gradient around the hypersaline lake Ejinur. Front Microbiol. 2021;12:698479. https://doi.org/10.3389/fmicb.2021.698479.

Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda M, Santoyo G et al. Teamwork to survive in hostile soils: Use of plant growth-promoting bacteria to ameliorate soil salinity stress in crops. Microorganisms. 2020;10:150. https://doi.org/10.3390/microorganisms10010150.

Imran QM, Falak N, Hussain A, Mun BG, Yun BW. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy. 2021;11:1579. https://doi.org/10.3390/agronomy11081579.

Wu Y, Huang W, Tian Q, Liu J, Xia X, Yang X et al. Comparative transcriptomic analysis reveals the cold acclimation during chilling stress in sensitive and resistant passion fruit (Passiflora edulis) cultivars. Peer J.2021;9:e10977. https://doi.org/10.7717/peerj.10977.

Issa A, Esmaeel Q, Sanchez L, Courteaux B, Guise JF, Gibon Y. Impacts of Paraburkholderiaphytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Front Plant Sci. 2018;9:1397. https://doi.org/10.3389/fpls.2018.01397.

Sarkar J, Chakraborty B, Chakraborty U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul. 2018;37:1396-1412. https://doi.org/10.1007/s00344-018-9789-8.

Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V et al. Heavy metal stress and responses in plants. Int J Environ Sci Technol. 2019;16:1807-1828. https://doi.org/10.1007/s13762-019-02215-8.

Ahmad P, Tripathi DK, Deshmukh R, Pratap SV, Corpas FJ. Revisiting the role of ROS and RNS in plants under changing environment. Environ Experi Botany. 2019;161:1-398. https://doi.org/10.1016/j.envexpbot.2019.02.017.

Guo J, Chi J. Effect of Cd-tolerant plant growth promoting Rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil. 2014;375:205-14. https://doi.org/10.1007/s11104-013-1952-1.

El-Shahir AA, Noha A, ElT, Omar MA, Arafat AH, Abdel L et al. The effect of endophytic Talaromycespinophilus on growth, absorption, and accumulation of heavy metals of Triticum aestivum grown on sandy soil amended by sewage sludge. Plants. 2021;10:2659. https://doi.org/10.3390/plants10122659.

Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance, and crop productivity. Microb Cell Fact. 2014;13:1-10. https://doi.org/10.1186/1475-2859-13-66.

Krey T, Vassilev N, Baum C, Eichler-Löbermann B. Effects of long-term phosphorus application and plant-growth-promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol. 2013;55:124-30. https://doi.org/10.1016/j.ejsobi.2012.12.007.

Malusa E, Vassilev N. A contribution to set a legal framework for biofertilizers. Appl Microbiol Biotechnol. 2012;98:6599-607. https://doi.org/10.1007/s00253-014-5828-y.

Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. 2017;33:0. https://doi.org/10.1007/s11274-017-2364-9

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, et al. Biofertilizers: A potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2017;24:3315-3335.

Published

19-07-2024 — Updated on 22-07-2024

Versions

How to Cite

1.
Sharma H, Chaudhary R, Poonam, Kalia M, Thakur K, Nautiyal S, Rawat A, Kagday M, Pal A, Rautela I, Kalia S. A Sustainable Agriculture Method Using Biofertilizers: An Eco-Friendly Approach. Plant Sci. Today [Internet]. 2024 Jul. 22 [cited 2024 Nov. 4];11(3). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3094

Issue

Section

Review Articles

Most read articles by the same author(s)