Effect of low temperature plasma on the growth and nutrients of lettuces under salt stress

Authors

DOI:

https://doi.org/10.14719/pst.3115

Keywords:

Low temperature plasma, lettuce, salt tolerance

Abstract

The effects of helium plasma seed treatment on lettuce growth under salt stress were studied. Lettuce seeds were treated with an atmospheric dielectric barrier discharge (DBD) helium plasma at different discharge voltages and then planted in different concentrations of salt solution hydroponic tanks. The results show that under the same NaCl concentration (6 g/L), with the increase of the treatment voltage, the growth and quality of the lettuces gradually improved, as confirmed by the measurement of seedling height, root length, the contents of chlorophyll and nitrogen in the leaves. Similarly, under the same treatment voltage (45 kV), with an increase in NaCl concentration, the promotion effect of plasma treatment gradually strengthens, as verified through significance analysis. These results indicate that plasma seed treatment could improve the salt resistance of lettuces.

Downloads

Download data is not yet available.

References

Zhu J-K. Plant salt tolerance. Trends Plant Sci. 2001;6(2):66-71. https://doi.org/10.1016/S1360-1385(00)01838-0

Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasma agriculture from laboratory to farm: A review. Processes. 2020;8(8):1002. https://doi.org/10.3390/pr8081002

López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, et al. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Front. Microbiol. 2019;10:622. https://doi.org/10.3389/fmicb.2019.00622

Ji S-H, Choi K-H, Pengkit A, Im JS, Kim JS, Kim YH, et al. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch. Biochem. Biophys. 2016;605:117-28. https://doi.org/10.1016/j.abb.2016.02.028

Bormashenko E, Grynyov R, Bormashenko Y, Drori E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep. 2012;2(1):741. https://doi.org/10.1038/srep00741

Mitra A, Li Y-F, Klämpfl TG, Shimizu T, Jeon J, Morfill GE, et al. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol. 2014;7:645-53. https://doi.org/10.1007/s11947-013-1126-4

Wang X-Q, Zhou R-W, Groot Gd, Bazaka K, Murphy AB, Ostrikov K. Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Sci Rep. 2017;7(1):5601. https://doi.org/10.1038/s41598-017-04963-4

El Shaer M, Mobasher M, Abdelghany A. Effect of gliding arc plasma on plant nutrient content and enzyme activity. Plasma Medicine. 2016;6(3-4). https://doi.org/10.1615/PlasmaMed.2016018649

Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, et al. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Appl. Mater. Interfaces. 2016;8(30):19268-75. https://doi.org/10.1021/acsami.6b04555

Ji SH, Kim T, Panngom K, Hong YJ, Pengkit A, Park DH, et al. Assessment of the effects of nitrogen plasma and plasma?generated nitric oxide on early development of Coriandum sativum. Plasma Process. Polym. 2015;12(10):1164-73. https://doi.org/10.1002/ppap.201500021

Gómez-Ramírez A, López-Santos C, Cantos M, García JL, Molina R, Cotrino J, et al. Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Sci Rep. 2017;7(1):5924. https://doi.org/10.1038/s41598-017-06164-5

Da Silva A, Farias M, Da Silva D, Vitoriano J, De Sousa R, Alves-Junior C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa caesalpiniafolia. Colloids Surf. B Biointerfaces. 2017;157:280-5. https://doi.org/10.1016/j.colsurfb.2017.05.063

Volkov AG, Hairston JS, Patel D, Gott RP, Xu KG. Cold plasma poration and corrugation of pumpkin seed coats. Bioelectrochemistry. 2019;128:175-85. https://doi.org/10.1016/j.bioelechem.2019.04.012

Alves Junior C, de Oliveira Vitoriano J, da Silva DLS, de Lima Farias M, de Lima Dantas NB. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci Rep. 2016;6(1):33722. https://doi.org/10.1038/srep33722

Matra K. Atmospheric non-thermal argon–oxygen plasma for sunflower seedling growth improvement. Jpn. J. Appl. Phys. 2017;57(1S):01AG3. https://doi.org/10.7567/JJAP.57.01AG03

Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4). https://doi.org/10.1016/j.heliyon.2019.e01495

Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep. 2015;5(1):13033. https://doi.org/10.1038/srep13033

Guo Q, Wang Y, Zhang H, Qu G, Wang T, Sun Q, et al. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep. 2017;7(1):16680. https://doi.org/10.1038/s41598-017-16944-8

Jiang J, Lu Y, Li J, Li L, He X, Shao H, et al. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS One. 2014;9(5):e97753. https://doi.org/10.1371/journal.pone.0097753

Adhikari B, Adhikari M, Ghimire B, Adhikari BC, Park G, Choi EH. Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radic. Biol. Med. 2020;156:57-69. https://doi.org/10.1016/j.freeradbiomed.2020.06.003

Gierczik K, Vukuši? T, Kovács L, Székely A, Szalai G, Miloševi? S, et al. Plasma?activated water to improve the stress tolerance of barley. Plasma Process. Polym. 2020;17(3):1900123. https://doi.org/10.1002/ppap.201900123

Kabir AH, Rahman MM, Das U, Sarkar U, Roy NC, Reza MA, et al. Reduction of cadmium toxicity in wheat through plasma technology. PLoS One. 2019;14(4):e0214509. https://doi.org/10.1371/journal.pone.0214509

Dehkourdi EH, Mosavi M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace Elem. Res. 2013;155:283-6. https://doi.org/10.1007/s12011-013-9788-3

Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep. 2014;4(1):5859. https://doi.org/10.1038/srep05859

Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 2000;51(1):463-99. https://doi.org/10.1146/annurev.arplant.51.1.463

Bewley JD, Black M. Seeds: physiology of development and germination: Springer Science & Business Media; 1994.

Nonogaki H, Bassel GW, Bewley JD. Germination—still a mystery. Plant Sci. 2010;179(6):574-81. https://doi.org/10.1016/j.plantsci.2010.02.010

Considine MJ, Foyer CH. Redox regulation of plant development. Antioxid. Redox Signal. 2014;21(9):1305-26. https://doi.org/10.1089/ars.2013.5665

Ruiz-Espinoza FH, Murillo-Amador B, Garcia-Hernandez JL, Fenech-Larios L, Rueda-Puente EO, Troyo-Dieguez E, et al. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. J. Plant Nutr. 2010;33(3):423-38. https://doi.org/10.1080/01904160903470463

Madeira AC, Ferreira A, de Varennes A, Vieira MI. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plant Anal. 2003;34(17-18):2461-70. https://doi.org/10.1081/CSS-120024779

León AP, Viña SZ, Frezza D, Chaves A, Chiesa A. Estimation of chlorophyll contents by correlations between SPAD?502 meter and chroma meter in butterhead lettuce. Commun. Soil Sci. Plant Anal. 2007;38(19-20):2877-85. https://doi.org/10.1080/00103620701663115

Chen Z, Li L, Zhang H, Huang Q. Stimulation of biomass and astaxanthin accumulation in Haematococcus pluvialis using low-temperature plasma (LTP). Bioresource Technology Reports. 2020;9:100385. https://doi.org/10.1016/j.biteb.2020.100385

Zhang Z, Liu H, Liu X, Chen Y, Lu Y, Shen M, et al. Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use Manage. 2022;38(1):964-77. https://doi.org/10.1111/sum.12711

Van Horn DJ, Okie JG, Buelow HN, Gooseff MN, Barrett JE, Takacs-Vesbach CD. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl. Environ. Microbiol. 2014;80(10):3034-43. https://doi.org/10.1128/AEM.03414-13

Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields. Plant Physiol. Biochem. 2013;63:170-6. https://doi.org/10.1016/j.plaphy.2012.11.024

Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, et al. ROS implication in a new antitumor strategy based on non?thermal plasma. Int. J. Cancer. 2012;130(9):2185-94. https://doi.org/10.1002/ijc.26252

Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D: Appl. Phys. 2012;45(26):263001. https://doi.org/10.1088/0022-3727/45/26/263001

Fgaier S, Aarrouf J, Lopez-Lauri F, Lizzi Y, Poiroux F, Urban L. Effect of high salinity and of priming of non-germinated seeds by UV-C light on photosynthesis of lettuce plants grown in a controlled soilless system. Front Plant Sci. 2023;14. https://doi.org/10.3389/fpls.2023.1198685

Volkov AG, Xu KG, Kolobov VI. Plasma-generated reactive oxygen and nitrogen species can lead to closure, locking and constriction of the Dionaea muscipula Ellis trap. J R Soc Interface. 2019;16:150. https://doi.org/10.1098/rsif.2018.0713

Cui DJ, Yin Y, Sun H, Wang XJ, Zhuang J, Wang L et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotox Environ Safe. 2022;240:113703. https://doi.org/10.1016/j.ecoenv.2022.113703

Priatama RA, Pervitasari AN, Park S, Park SJ, Lee YK. Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth. Int J Mol Sci. 2022;23(9). https://doi.org/10.3390/ijms23094609

Liu B, Honnorat B, Yang H, Arancibia J, Rajjou L, Rousseau A. Non-thermal DBD plasma array on seed germination of different plant species. J Phys D-Appl Phys. 2018;52(2). https://doi.org/10.1088/1361-6463/aae771

Published

02-12-2024 — Updated on 01-01-2025

Versions

How to Cite

1.
Liu X, Zhang D, Guo J, Yang C, Bian S, Lusi A, Li B, Gao Q, Tang X, Lin L, Lu W, Huang F. Effect of low temperature plasma on the growth and nutrients of lettuces under salt stress. Plant Sci. Today [Internet]. 2025 Jan. 1 [cited 2025 Jan. 6];12(1). Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3115

Issue

Section

Research Articles

Most read articles by the same author(s)