Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 11 No. 3 (2024)

Anti-fungal efficacy of Carvacrol against Candida glabrata clinical isolates of vulvovaginal candidiasis

DOI
https://doi.org/10.14719/pst.3140
Submitted
29 November 2023
Published
21-07-2024 — Updated on 22-07-2024
Versions

Abstract

Fungal infections affect over 1 billion people worldwide each year, including superficial infections like athlete's foot and more severe systemic infections. Fungal diseases are responsible for an estimated 1.5 million deaths annually, a figure comparable to or exceeding the mortality rate of diseases like malaria or tuberculosis. The limited arsenal of available antifungal drugs, coupled with the emergence of drug-resistant fungal strains, has increased this concern. Therefore, there is a significant need to explore alternative therapeutics to overcome fungal pathogens. Carvacrol, phenolic monoterpenoids, is present in essential oils of many plants and is known for its biological and pharmacological properties. In the present study, the efficacy of carvacrol was investigated against four Candida glabrata strains isolated from patients of vulvovaginal candidiasis, which have shown varying extents of susceptibility against fluconazole. Carvacrol, a phytoactive monoterpene phenol, has shown a minimum inhibitory concentration (MIC50) ranging from 75 to 125 µg/mL and minimum fungicidal concentration of 150 and 175 µg/mL for all clinical isolates, including wild-type strains. Carvacrol, in combination with fluconazole, has shown a strong synergism against wild type C. glabrata with a FIC index value of 0.156. Preliminary mechanistic investigations unveiled that exposure to carvacrol significantly reduced cell surface hydrophobicity and ergosterol content in all strains. In conclusion, carvacrol holds promising potential as an effective antifungal agent against C. glabrata, which is categorized as high priority in the first fungal pathogen priority list of the World Health Organisation released in 2022 for highlighting priority areas for action, including the development of effective therapeutic solution.

References

  1. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi. 2017;3(4). http://doi.org/10.3390/jof3040057
  2. Vallabhaneni S, Mody RK, Walker T, Chiller T. The global burden of fungal diseases. Infectious Disease Clinics. 2016 Mar 1;30(1):1-1. http://dx.doi.org/10.1016/j.idc.2015.10.004
  3. Kontoyiannis DP. Antifungal resistance: An emerging reality and a global challenge. Journal of Infectious Diseases. 2017;216(Suppl 3):S431-35. http://doi.org/10.1093/infdis/jix179
  4. Gaspar-Cordeiro A, Amaral C, Pobre V, Antunes W, Petronilho A, Paixão P et al. Copper acts synergistically with fluconazole in Candida glabrata by compromising drug efflux, sterol metabolism and zinc homeostasis. Front Microbiol. 2022;13:920574. https://doi.org/10.3389/fmicb.2022.920574
  5. Fisher MC, Denning DW. The WHO fungal priority pathogens list as a game-changer. Nat Rev Microbiol. 2023;21(4):211-12. https://doi.org/10.1038/s41579-023-00861-x
  6. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect Dis. 2018;18(11): e339-47. Available from: http://dx.doi.org/10.1016/S1473-3099(18)30103-8
  7. Ksiezopolska E, Schikora-Tamarit MÀ, Beyer R, Nunez-Rodriguez JC, Schüller C, Gabaldón T. Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Current Biology. 2021;31(23):5314-26.e10. http://doi.org/ 10.1016/j.cub.2021.09.084
  8. Deorukhkar SC. Virulence traits contributing to pathogenicity of Candida species. J Microbiol Exp. 2017;5(1):8-11. http://doi.org/10.15406/jmen.2017.05.00140
  9. Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM. Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix and cell wall components of Candida glabrata and its clinical isolates. ACS Omega. 2018;3(9):12201-14. https://doi.org/10.1021/acsomega.8b01856
  10. Wang Q, Cai X, Li Y, Zhao J, Liu Z, Jiang Y et al. Molecular identification, antifungal susceptibility and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Front Microbiol. 2022 Oct 6;13. https://doi.org/10.3389/fmicb.2022.1006375
  11. Aljaafari MN, Alali AO, Baqais L, Alqubaisy M, Alali M, Molouki A et al. An overview of the potential therapeutic applications of essential oils. Molecules. 2021;26(3). https://doi.org/ 10.3390/molecules26030628
  12. Can Baser K. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14(29):3106-19. http://doi.org/10.2174/138161208786404227
  13. Gandova V, Lazarov A, Fidan H, Dimov M, Stankov S, Denev P et al. Physicochemical and biological properties of carvacrol. Open Chem. 2023;21(1). https://doi.org/10.1515/chem-2022-0319
  14. Memar MY, Raei P, Alizadeh N, Aghdam MA, Kafil HS. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Reviews in Medical Microbiology. 2017;28(2):63-68. https://doi.org /10.1097/MRM.0000000000000100
  15. Miranda-Cadena K, Marcos-Arias C, Mateo E, Aguirre-Urizar JM, Quindós G, Eraso E. In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomedicine and Pharmacotherapy. 2021 Nov 1;143. https://doi.org/10.1016/j.biopha.2021.112218
  16. Gupta P, Chanda R, Rai N, Kataria VK, Kumar N. Antihypertensive, Amlodipine besilate inhibits growth and biofilm of human fungal pathogen Candida. Assay Drug Dev Technol. 2016;14(5):291-97. https://doi.org/10.1089/adt.2016.714
  17. Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M. Production of recombinant antimicrobial polymeric protein beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol. Molecules. 2017 Jun 1;22(6). https://doi.org/10.3390/molecules22060822
  18. Priya A, Selvaraj A, Divya D, Karthik Raja R, Pandian SK. In vitro and in vivo anti-infective potential of thymol against early childhood caries causing dual species Candida albicans and Streptococcus mutans. Front Pharmacol. 2021 November;12:1-16. https://doi.org/10.3389/fphar.2021.760768
  19. RR Goswami, SD Pohare, JS Raut, S Mohan Karuppayil. Cell surface hydrophobicity as a virulence factor in Candida albicans. Biosci Biotechnol Res Asia. 2017;14(4):1503-11. http://dx.doi.org/10.13005/bbra/2598
  20. Nagoor Meeran MF, Javed H, Taee H Al, Azimullah S, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology. Frontiers Media SA. 2017;Vol. 8. https://doi.org/10.3389/fphar.2017.00380
  21. Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology. Frontiers Media SA. 2022;Vol. 13. https://doi.org/10.3389/fphar.2022.917787
  22. Vu BG, Scott Moye-Rowley W. Azole-resistant alleles of ERG11 in Candida glabrata trigger activation of the Pdr1 and Upc2A transcription factors. Antimicrob Agents Chemother. 2022;15;66(3):e0209821. https://doi.org/10.1128/AAC.02098-21
  23. Lotfali E, Erami M, Fattahi M, Nemati H, Ghasemi Z, Mahdavi E. Analysis of molecular resistance to azole and echinocandin in Candida species in patients with vulvovaginal candidiasis. Curr Med Mycol. 2022 Jun 1;8(2):1-7. https://doi.org/10.18502/cmm.8.2.10326
  24. Sasani E, Yadegari MH, Khodavaisy S, Rezaie S, Salehi M, Getso MI. Virulence factors and azole-resistant mechanism of Candida tropicalis isolated from Candidemia. Mycopathologia. 2021;186(6):847-56. https://doi.org/10.1007/s11046-021-00580-y.
  25. Carradori S, Ammazzalorso A, De Filippis B, ?ahin AF, Akdemir A, Orekhova A et al. Azole-based compounds that are active against Candida biofilm: In vitro, in vivo and in silico studies. Antibiotics. 2022 Oct 1;11(10). https://doi.org/10.3390/antibiotics11101375
  26. El Said M, Badawi H, Gamal D, Salem D, Dahroug H, El-Far A. Detection of ERG11 gene in fluconazole resistant urinary Candida isolates. Egypt J Immunol. 2022 Oct 1;29(4):134-47. https://doi.org/10.55133/eji.290413
  27. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402-14. http://dx.doi.org/10.1016/j.foodchem.2016.04.111
  28. Sharifzadeh A, Khosravi AR, Shokri H, Shirzadi H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J Mycol Med. 2018 Jun 1;28(2):294-99. http://dx.doi.org/10.1016/j.mycmed.2018.04.002
  29. Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M et al. The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrob Agents Chemother. 2015;59(8):4584-92. https://doi.org/ 0.1128/AAC.00551-15
  30. Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European Journal of Clinical Microbiology and Infectious Diseases. 2011 Jan;30(1):41-50. https://doi.org/ 10.1007/s10096-010-1050-8
  31. Niu C, Wang C, Yang Y, Chen R, Zhang J, Chen H et al. Carvacrol induces Candida albicans apoptosis associated with Ca2+/calcineurin pathway. Front Cell Infect Microbiol. 2020 April;10:1-12. https://doi.org/ 10.3389/fcimb.2020.00192
  32. Lima IO, De Oliveira Pereira F, De Oliveira WA, De Oliveira Lima E, Menezes EA, Cunha FA et al. Antifungal activity and mode of action of carvacrol against Candida albicans strains. Journal of Essential Oil Research. 2013;25(2):138-42. https://doi.org/10.1080/10412905.2012.754728
  33. Rao A, Zhang Y, Muend S, Rao R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother. 2010;54(12):5062-69. https://doi.org/10.1128/AAC.01050-10
  34. Kaskatepe B, Erdem SA, Ozturk S, Oz ZS, Subasi E, Koyuncu M et al. Antifungal and anti-virulent activity of Origanum majorana L. essential oil on Candida albicans and in vivo toxicity in the Galleria mellonella larval model. Molecules. 2022;27(3). https://doi.org/10.3390/molecules27030663
  35. Rajkowska K, Kunicka-Styczy?ska A, Peczek M. Hydrophobic properties of Candida spp. under the influence of selected essential oils. Acta Biochim Pol. 2015;62(4):663-68. https://doi.org/10.18388/abp.2015_1096

Downloads

Download data is not yet available.