Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

The impact of fermentation duration on pH, antioxidant properties and consumer preference of Spirulina sp. beverage

DOI
https://doi.org/10.14719/pst.3157
Submitted
2 December 2023
Published
21-08-2025
Versions

Abstract

Fermentation enhances the nutritional value of antioxidants in food. Fermentation breaks down the cell wall structure of the ingredients and activates enzymes that release bound compounds, such as antioxidant phenolics. This study aimed to assess the effect of fermentation time on Spirulina sp. regarding antioxidant activity, pH, consumer preference and low molecular weight bioactive compounds. The results showed that the best fermentation time was the first day with the highest antioxidant activity of 86.82 % a pH value of 4.76; phytochemical screening analysis indicated the presence of positive compounds from the flavonoid, alkaloid, steroid, triterpenoid, catechol and phenolic groups; total phenolic content of 147.548 µg/ml; presence of 9 essential amino acids and seven non-essential amino acids; consumer preference level of 7.22 < µ < 7.50; and the primary low molecular weight bioactive compound is hexadecenoic acid with an area of 55.77 %. The findings indicated that beverages fermented with Spirulina sp. possess the potential to serve as promising health-functional beverages, given their abundance of active compounds that are advantageous to health.

References

  1. 1. Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, et al. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochem Rev. 2023;22:903–33. https://doi.org/10.1007/s11101-022-09848-7
  2. 2. Villarruel-López A, Ascencio F, Nuño K. Microalgae, a potential natural functional food source – a review. Pol J Food Nutr Sci. 2017;67:251–63. https://doi.org/10.1515/pjfns-2017-0017
  3. 3. Silva M, Geada P, Pereira RN, Teixeira JA. Microalgae biomass–a source of sustainable dietary bioactive compounds towards improved health and well-being. Food Chem Adv. 2025;6:100926. https://doi.org/10.1016/j.focha.2025.100926
  4. 4. Pan-utai W, Iamtham S. Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technol Biotechnol. 2020;58:423–32. https://doi.org/10.17113/ftb.58.04.20.6622
  5. 5. Riyadi PH, Atho’illah MF, Tanod WA, Rahmawati IS. Tilapia viscera hydrolysate extract alleviates oxidative stress and renal damage in deoxycorticosterone acetate-salt-induced hypertension rats. Vet World. 2020;13:2477–83. https://doi.org/10.14202/vetworld.2020.2477-2483
  6. 6. Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s disease. Biomed Pharmacother. 2016;78:39–49. https://doi.org/10.1016/j.biopha.2015.12.024
  7. 7. Lafarga T. Effect of microalgal biomass incorporation into foods: nutritional and sensorial attributes of the end products. Algal Res. 2019;41:101566. https://doi.org/10.1016/j.algal.2019.101566
  8. 8. Hansen EB. Redox reactions in food fermentations. Curr Opin Food Sci. 2018;19:98–103. https://doi.org/10.1016/j.cofs.2018.03.004
  9. 9. Villarreal‐Soto SA, Beaufort S, Bouajila J, Souchard J, Taillandier P. Understanding Kombucha tea fermentation: a review. J Food Sci. 2018;83:580–8. https://doi.org/10.1111/1750-3841.14068
  10. 10. Wuryandari MRE, Atho’illah MF, Laili RD, Fatmawati S, Widodo N, Widjajanto E, et al. Lactobacillus plantarum FNCC 0137 fermented red Moringa oleifera exhibits protective effects in mice challenged with Salmonella typhi via TLR3/TLR4 inhibition and down-regulation of proinflammatory cytokines. J Ayurveda Integr Med. 2022;13:100531. https://doi.org/10.1016/j.jaim.2021.10.003
  11. 11. Chen Y, Ma Y, Dong L, Jia X, Liu L, Huang F, et al. Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility. LWT. 2019;115:108461. https://doi.org/10.1016/j.lwt.2019.108461
  12. 12. Rose H, Bakshi S, Kanetkar P, Lukose SJ, Felix J, Yadav SP, et al. Development and characterization of cultured buttermilk fortified with Spirulina plantensis and its physico-chemical and functional characteristics. Dairy. 2023;4:271–84. https://doi.org/10.3390/dairy4020019
  13. 13. Bartkiene E, Starkute V, Jomantaite I, Zokaityte E, Mockus E, Tolpeznikaite E, et al. Multifunctional nutraceutical composition based on fermented Spirulina, apple cider vinegar, Jerusalem artichoke and bovine colostrum. Foods. 2023;12:1690. https://doi.org/10.3390/foods12081690
  14. 14. Liu J-G, Hou C-W, Lee S-Y, Chuang Y, Lin C-C. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochem. 2011;46:1405–10. https://doi.org/10.1016/j.procbio.2011.03.010
  15. 15. Rifai M, Athoillah MF, Arifah SN, Suharto AR, Fadhilla AN, Saadah NAM, et al. Physicochemical and functional optimization of probiotic yogurt with encapsulated Lacticaseibacillus paracasei E1 enriched with green tea using Box–Behnken design. Appl Food Res. 2025;5:100690. https://doi.org/10.1016/j.afres.2024.100690
  16. 16. Okechukwu QN, Adadi P, Kovaleva EG. Production and analysis of beer supplemented with Chlorella vulgaris powder. Fermentation. 2022;8:581. https://doi.org/10.3390/fermentation8110581
  17. 17. Roghini R, Vijayalakshmi K. Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of Citrus paradisi. Int J Pharm Sci Res. 2018;9:4859–64. https://doi.org/10.13040/IJPSR.0975-8232.9(11).4859-64
  18. 18. Sepahpour S, Selamat J, Abdul Manap M, Khatib A, Abdull Razis A. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules. 2018;23:402. https://doi.org/10.3390/molecules23020402
  19. 19. Moutawalli A, Benkhouili FZ, Ouchari L, El Fahime E, Benzeid H, Doukkali A, et al. Quantitative phytochemical, antioxidant and antimicrobial properties of the seeds of Lawsonia inermis L. Plant Sci Today. 2024;11:105–16. https://doi.org/10.14719/pst.2834
  20. 20. Cobas N, Gómez-Limia L, Franco I, Martínez S. Amino acid profile and protein quality related to canning and storage of swordfish packed in different filling media. J Food Compos Anal. 2022;107:104328. https://doi.org/10.1016/j.jfca.2021.104328
  21. 21. Cardello AV. Hedonic scaling: assumptions, contexts and frames of reference. Curr Opin Food Sci. 2017;15:14–21. https://doi.org/10.1016/j.cofs.2017.05.002
  22. 22. Riyadi PH, Tanod WA, Dewanto DK, Herawati VE, Susanto E, Aisiah S. Chemical profiles and antioxidant properties of Bruguiera gymnorrhiza fruit extracts from Central Sulawesi, Indonesia. Food Res. 2021;5:37–47. https://doi.org/10.26656/fr.2017.5(S3).007
  23. 23. Benhamada N, Idoui T. Enhancement of antioxidant properties of Triticum durum obtained by traditional spontaneous fermentation in underground silos. Acta Sci Biol Sci. 2021;43:e57080. https://doi.org/10.4025/actascibiolsci.v43i1.57080
  24. 24. Athoillah MF, Safitri YD, Nur Aini FD, Savitri RU, Rahayu S, Widyarti S, et al. Evaluation of glyceollin accumulation and antioxidant properties on soybean (Glycine max L.) through combination of different biotic elicitor and light. Sci Study Res Chem Chem Eng Biotechnol Food Ind. 2019;20:199–208.
  25. 25. Hensen J-P, Hoening F, Weilack I, Damm S, Weber F. Influence of grape cell wall polysaccharides on the extraction of polyphenols during fermentation in microvinifications. J Agric Food Chem. 2022;70:9117–31. https://doi.org/10.1021/acs.jafc.2c02697
  26. 26. Masten Rutar J, Cillero-Pastor B, Mohren R, Poklar Ulrih N, Ogrinc N, Jamnik P. Insight into the antioxidant effect of fermented and non-fermented spirulina water and ethanol extracts at the proteome level using a yeast cell model. Antioxidants. 2021;10:1366. https://doi.org/10.3390/antiox10091366
  27. 27. Sahin B, Hosoglu MI, Guneser O, Karagul-Yuceer Y. Fermented spirulina products with Saccharomyces and non-Saccharomyces yeasts: Special reference to their microbial, physico-chemical and sensory characterizations. Food Biosci. 2022;47:101691. https://doi.org/10.1016/j.fbio.2022.101691
  28. 28. Zou B, Wu J, Yu Y, Xiao G, Xu Y. Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Sci Biotechnol. 2017;26:563–71. https://doi.org/10.1007/s10068-017-0099-x
  29. 29. Budiono B, Pertami SB, Kasiati, Arifah SN, Atho’illah MF. Lactogenic effect of Polyscias scutellaria extract to maintain postpartum prolactin and oxytocin in lactating rats. J Ayurveda Integr Med. 2023;14:100580. https://doi.org/10.1016/j.jaim.2022.100580
  30. 30. Kuljarusnont S, Iwakami S, Iwashina T, Tungmunnithum D. Flavonoids and other phenolic compounds for physiological roles, plant species delimitation and medical benefits: a promising view. Molecules. 2024;29:5351. https://doi.org/10.3390/molecules29225351
  31. 31. Susanto E, Mustajab RM, Kamil M, Atho’illah MF, Riyadi PH, Kurniasih RA, et al. Unlocking nature’s potential: a comparative study of bioactive compounds extracted from tropical microalgae. Mol Biotechnol. 2024. https://doi.org/10.1007/s12033-024-01080-2
  32. 32. Ayed L, Ben Abid S, Hamdi M. Development of a beverage from red grape juice fermented with the Kombucha consortium. Ann Microbiol. 2017;67:111–21. https://doi.org/10.1007/s13213-016-1242-2
  33. 33. Pan-utai W, Atkonghan J, Onsamark T, Imthalay W. Effect of Arthrospira microalga fortification on physicochemical properties of yogurt. Curr Res Nutr Food Sci J. 2020:531–40. https://doi.org/10.12944/CRNFSJ.8.2.19
  34. 34. Tolpeznikaite E, Bartkevics V, Skrastina A, Pavlenko R, Mockus E, Zokaityte E, et al. Changes in Spirulina’s physical and chemical properties during submerged and solid-state lacto-fermentation. Toxins. 2023;15:75. https://doi.org/10.3390/toxins15010075
  35. 35. Ebid WMA, Ali GS, Elewa NAH. Impact of Spirulina platensis on physicochemical, antioxidant, microbiological and sensory properties of functional labneh. Discov Food. 2022;2:29. https://doi.org/10.1007/s44187-022-00031-7
  36. 36. Riyadi PH, Romadhon R, Anggo AD, Atho’illah MF, Rifa’i M. Tilapia viscera protein hydrolysate maintain regulatory T cells and protect acute lung injury in mice challenged with lipopolysaccharide. J King Saud Univ Sci. 2022;34:102020. https://doi.org/10.1016/j.jksus.2022.102020
  37. 37. McCann JR, Rawls JF. Essential amino acid metabolites as chemical mediators of host-microbe interaction in the gut. Annu Rev Microbiol. 2023;77:479–97. https://doi.org/10.1146/annurev-micro-032421-111819
  38. 38. Aruna TE, Aworh OC, Raji AO, Olagunju AI. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann Agric Sci. 2017;62:33–7. https://doi.org/10.1016/j.aoas.2017.01.002
  39. 39. Hirst MB, Richter CL. Review of aroma formation through metabolic pathways of Saccharomyces cerevisiae in beverage fermentations. Am J Enol Vitic. 2016;67:361–70. https://doi.org/10.5344/ajev.2016.15098
  40. 40. Buratti S, Benedetti S. Alcoholic fermentation using electronic nose and electronic tongue. In: Electronic Noses and Tongues in Food Science. Elsevier; 2016. p. 291–9. https://doi.org/10.1016/B978-0-12-800243-8.00028-7
  41. 41. Yu J, Liu C, Wang M, Liu Y, Ran L, Yu Z, et al. Nutrition and flavor analysis of Spirulina through co-fermentation with Lactobacillus acidophilus and Kluyveromyces marxianus and its effect on attenuating metabolic associated fatty liver disease. J Funct Foods. 2024;116:106149. https://doi.org/10.1016/j.jff.2024.106149
  42. 42. Abdel-Aal EI, Haroon AM, Mofeed J. Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata. Egypt J Aquat Res. 2015;41:233–46. https://doi.org/10.1016/j.ejar.2015.06.001
  43. 43. Rizwana H, Al Otibi F, Al-Malki N. Chemical composition, FTIR studies and antibacterial activity of Passiflora edulis f. edulis (fruit). J Pure Appl Microbiol. 2019;13:2489–98. https://doi.org/10.22207/JPAM.13.4.64
  44. 44. Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J Pharm Sci. 2021;7:59. https://doi.org/10.1186/s43094-021-00208-4
  45. 45. Rahamouz-Haghighi S, Bagheri K, Mohsen-Pour N, Sharafi A. In vitro evaluation of cytotoxicity and antibacterial activities of ribwort plantain (Plantago lanceolata L.) root fractions and phytochemical analysis by GC/MS. Arch Razi Inst. 2022. https://doi.org/10.22092/ari.2022.358045.2143
  46. 46. Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 2020;6:106. https://doi.org/10.3390/fermentation6040106
  47. 47. Ferdosi MFH, Khan IH, Javaid A, Saeed HM, Butt I, Munir A. GC-MS analysis profile and bioactive components of flowers of Bergenia ciliata, a weed of rock crevices. J Weed Sci Res. 2021;27:527–35. https://doi.org/10.28941/pjwsr.v27i4.1012
  48. 48. Mahmud PIAM, Yaacob WA, Ibrahim N, Abu Bakar M. Antibacterial activity and major constituents of Polyalthia cinnamomea basic fraction. Sains Malays. 2018;47:2063–71. https://doi.org/10.17576/jsm-2018-4709-14

Downloads

Download data is not yet available.