This is an outdated version published on 28-12-2024. Read the most recent version.
Forthcoming

Sex evolution path involved in flowering plant family Cucurbitaceae: A review

Authors

DOI:

https://doi.org/10.14719/pst.3176

Keywords:

Flowering plant , evolution , multiple pathways , major plant types, sex determination

Abstract

The predominant sexual system in the plant kingdom is hermaphroditism, where both female and male reproductive organs coexist within a single flower. The major parameters that influence the sexual systems are genetic variation, pollinator availability and type, mating system, ecological factors, geographical isolation, selective pressures, evolutionary history, polyploidy, hybridization and sexual conflict. These factors all play significant roles. Plants may evolve self-fertilization or outcrossing mechanisms based on their specific environmental conditions, reproductive strategies and evolutionary history. The interplay of these factors shapes the diverse range of sexual systems observed in plant species worldwide. The Cucurbitaceae family exhibits a highly specialized sex chromosome differentiation scheme with three major sexual patterns (monoecy, dioecy and hermaphroditism).  In the present review, we focus on the evolution of gender in flowering plants of the Cucurbitaceae family, exploring the various paths and drivers involved in the evolution of dioecy. We also shed light on the sex chromosomes and phytohormones that contribute to gender diversification. Several molecular and genomic approaches have been recently applied to uncover the genetic basis of gender differentiation in different flowering plant species.

Downloads

Download data is not yet available.

References

Ming R, Yu Q, Moore PH. Sex determination in papaya. In: Seminars in Cell and Developmental Biology. Academic Press; 2007 Jun 1.18(3):401-08. https://doi.org/10.1016/j.semcdb.2006.11.013

Vyskot B, Hobza R. Gender in plants: sex chromosomes are emerging from the fog. Trends in Genetics. 2004 Sep 1;20(9):432-38. https://doi.org/10.1016/j.tig.2004.06.006

Kobayashi T, Kitoh M, Filatov DA, Kazama Y. Evolution of sex chromosomes and gynoecium suppression in plants. Cytologia. 2023 Jun 25;88(2):91-94. https://doi.org/10.1508/cytologia.88.91

Xia Z, Chen BJ, Korpelainen H, Niinemets Ü, Li C. Belowground ecological interactions in dioecious plants: why do opposites attract but similar ones repel?. Trends in Plant Science. 2024 Mar 13;29(6):630-37. https://doi.org/10.1016/j.tplants.2024.02.009

Charlesworth D. Plant sex determination and sex chromosomes. Heredity. 2002 Feb;88(2):94-101. https://doi.org/10.1038/sj.hdy.6800016

Razumova OV, Alexandrov OS, Bone KD, Karlov GI, Divashuk MG. Sex chromosomes and sex determination in dioecious agricultural plants. Agronomy. 2023 Feb 14;13(2):540. https://doi.org/10.3390/agronomy13020540

Renner SS, Müller NA. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. Nature Plants. 2021 Apr;7(4):392-402. https://www.nature.com/articles/s41477-021-00884-3

Shi H, Yang B, Lyu T, Wang Z, Sun H. Contraction and expansion: global geographical variation in reproductive systems of Primula is driven by different mechanisms. Journal of Biogeography. 2024 Apr 17. https://doi.org/10.1111/jbi.14849

Hörandl E. Apomixis and the paradox of sex in plants. Annals of Botany. 2024 Mar 18;mcae044. https://doi.org/10.1093/aob/mcae044

Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, et al. Genomics of plant speciation. Plant Communications. 2023 Apr 11. https://doi.org/10.1016/j.xplc.2023.100599

Kuchanur PH, SP PS, Raghavendra VC. Molecular basis of self-incompatibility in plants: Unraveling nature's genetic check against self-fertilization. International Journal of Environment and Climate Change. 2024 Apr 17;14(4):330-40. https://doi.org/10.9734/ijecc/2024/v14i44120

Xu K. Effects of selfing on the evolution of sexual reproduction. Evolution. 2024 May 1;78(5):879-93. https://doi.org/10.1093/evolut/qpae016

Grumet R, McCreight JD, McGregor C, Weng Y, Mazourek M, Reitsma K, et al. Genetic resources and vulnerabilities of major cucurbit crops. Genes. 2021 Aug 7;12(8):1222. https://doi.org/10.3390/genes12081222

Wisnev MA. Dioecy in Cactaceae: Species with unisexual flowers. Cactus and Succulent Journal. 2024 Jan;95(4):305-25. https://doi.org/10.2985/015.095.0404

Chakravarty HL. Monograph on Indian Cucurbitaceae. Records of the Botanical Survey of India. 1959;pp. 86-99.

Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics. 2010 Sep 1;186(1):9-31. https://doi.org/10.1534/genetics.110.117697

Ma YF, Han XM, Huang CP, Zhong L, Adeola AC, Irwin DM, et al. Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs. Scientific Reports. 2019 Aug 7;9(1):11463. https://doi.org/10.1038/s41598-019-47711-6

Kozielska M, Weissing FJ, Beukeboom LW, Pen I. Segregation distortion and the evolution of sex-determining mechanisms. Heredity. 2010 Jan;104(1):100-12. https://doi.org/10.1038/hdy.2009.104

Pannell JR, Jordan CY. Evolutionary transitions between hermaphroditism and dioecy in animals and plants. Annual Review of Ecology, Evolution and Systematics. 2022 Nov 2;53:183-201. https://doi.org/10.1146/annurev-ecolsys-102320-085812

Goodwillie C, Kalisz S, Eckert CG. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations and empirical evidence. The Annual Review of Ecology, Evolution and Systematics. 2005 Dec 15;36(1):47-79. DOI:10.1146/annurev.ecolsys.36.091704.175539

Renner SS, Ricklefs RE. Dioecy and its correlates in the flowering plants. American Journal of Botany. 1995 May;82(5):596-606. https://doi.org/10.1002/j.1537-2197.1995.tb11504.x

Barrett SC. The evolution of plant reproductive systems: how often are transitions irreversible?. Proceedings of the Royal Society B: Biological Sciences. 2013 Aug 22;280 (1765):20130913. https://doi.org/10.1098/rspb.2013.0913

Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL. Macroevolutionary synthesis of flowering plant sexual systems. Evolution. 2017 Apr 1;71(4):898-912. https://doi.org/10.1111/evo.13181

Rovatsos M, Gamble T, Nielsen SV, Georges A, Ezaz T, Kratochvíl L. Do male and female heterogamety really differ in expression regulation? Lack of global dosage balance in pygopodid geckos. Philosophical Transactions of the Royal Society B. 2021 Sep 13;376(1833):20200102. https://doi.org/10.1098/rstb.2020.0102

Renner SS. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy and an updated online database. American Journal of Botany. 2014 Oct;101(10):1588-96. https://doi.org/10.3732/ajb.1400196

Käfer J, Mousset S. Standard sister clade comparison fails when testing derived character states. Systematic Biology. 2014 Jul 1;63(4):601-09. https://doi.org/10.1093/sysbio/syu024

Sabath N, Goldberg EE, Glick L, Einhorn M, Ashman TL, Ming R, et al. Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms. New Phytologist. 2016 Feb;209(3):1290-300. https://doi.org/10.1111/nph.13696

Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, et al. Sex determination: why so many ways of doing it?. PLoS Biology. 2014 Jul 1;12(7):e1001899. https://doi.org/10.1371/journal.pbio.100189

Käfer J, Marais GA, Pannell JR. On the rarity of dioecy in flowering plants. Molecular Ecology. 2017 Mar;26(5):1225-41. https://doi.org/10.1111/mec.1402

Charlesworth D, Harkess A. Why should we study plant sex chromosomes?. The Plant Cell. 2024 Jan 2;koad278. https://doi.org/10.1093/plcell/koad278

Charlesworth D. The status of supergenes in the 21st century: recombination suppression in B atesian mimicry and sex chromosomes and other complex adaptations. Evolutionary Applications. 2016 Jan;9(1):74-90. https://doi.org/10.1111/eva.12291

Wright AE, Mank JE. The scope and strength of sex?specific selection in genome evolution. Journal of Evolutionary Biology. 2013 Sep 1;26(9):1841-53. https://doi.org/10.1111/jeb.12201

Liu M, Korpelainen H, Li C. Sexual differences and sex ratios of dioecious plants under stressful environments. Journal of Plant Ecology. 2021 Oct 1;14(5):920-33. https://doi.org/10.1093/jpe/rtab038

Glémin S. Mating systems and the efficacy of selection at the molecular level. Genetics. 2007 Oct 1;177(2):905-16. https://doi.org/10.1534/genetics.107.073601

Igic B, Kohn JR. The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution. 2006 May 1;60(5):1098-103. https://doi.org/10.1111/j.0014-3820.2006.tb01186.x

Barrett SC. Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences. 2015 Jul 21;112(29):8859-66. https://doi.org/10.1073/pnas.1501712112 https://doi.org/10.1073/pnas.1501712112

Ashman TL, Kwok A, Husband BC. Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenetic and Genome Research. 2013 Jul 3;140(2-4):241-55. https://doi.org/10.1159/000353306

Pannell JR. Evolution of the mating system in colonizing plants. Invasion Genetics: The Baker and Stebbins Legacy. 2016 Aug 12;57-80. https://doi.org/10.1002/9781119072799.ch4

Thomson JD, Barrett SC. Selection for outcrossing, sexual selection and the evolution of dioecy in plants. The American Naturalist. 1981 Sep 1;118(3):443-49. https://www.journals.uchicago.edu/doi/abs/10.1086/283837

Dornier A, Dufay M. How selfing, inbreeding depression and pollen limitation impact nuclear-cytoplasmic gynodioecy: a model. Evolution. 2013 Sep 1;67(9):2674-87. https://doi.org/10.1111/evo.12142

Litrico I, Maurice S. Resources, competition and selfing: their influence on reproductive system evolution. Evolutionary Ecology. 2013 Sep;27:923-36. DOI 10.1007/s10682-012-9613-z

Ehlers BK, Bataillon T. ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytologist. 2007 Apr;174(1):194-211. https://doi.org/10.1111/j.1469-8137.2007.01975.x

McCauley DE, Bailey MF. Recent advances in the study of gynodioecy: the interface of theory and empiricism. Annals of Botany. 2009 Sep 1;104(4):611-20. https://doi.org/10.1093/aob/mcp141

Renner SS. Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. doi:10.3732/ajb.1600029

Rivkin LR, Case AL, Caruso CM. Why is gynodioecy a rare but widely distributed sexual system? Lessons from the Lamiaceae. New Phytologist. 2016 Jul;211(2):688-96. https://doi.org/10.1111/nph.13926

Dorken ME, Barrett SC. Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004 Jan 22;271(1535):213-19. https://doi.org/10.1098/rspb.2003.2580

Yakimowski SB, Barrett SC. The role of hybridization in the evolution of sexual system diversity in a clonal, aquatic plant. Evolution. 2016 Jun 1;70(6):1200-11. https://doi.org/10.1111/evo.12941

Mohanty JN, Chand SK, Joshi RK. Multiple microRNAs regulate the floral development and sex differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Plant Molecular Biology Reporter. 2019 Apr 15;37:111-28. https://doi.org/10.1007/s11105-019-01143-8

Ainsworth C. Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany. 2000 Aug 1;86(2):211-21. https://doi.org/10.1006/anbo.2000.1201

Baránková S, Pascual-Díaz JP, Sultana N, Alonso-Lifante MP, Balant M, Barros K, et al. Sex-chrom, a database on plant sex chromosomes. The New Phytologist. 2020 Sep 1;227(6):1594-604. https://doi.org/10.1111/nph.16635

Rautenberg A, Sloan DB, Aldén V, Oxelman B. Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Systematic Botany. 2012 Mar 1;37(1):226-37. https://doi.org/10.1600/036364412X616792

Yin T, DiFazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, et al. Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Research. 2008 Mar 1;18(3):422-30. doi:10.1101/gr.7076308

Yu Q, Navajas-Pérez R, Tong E, Robertson J, Moore PH, Paterson AH, Ming R. Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Tropical Plant Biology. 2008 Mar;1:49-57. DOI:10.1007/s12042-007-9005-7

Oyama RK, Silber MV, Renner SS. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae). BMC Research Notes. 2010 Dec;3:1-7. http://www.biomedcentral.com/1756-0500/3/166

Oyama RK, Volz SM, Renner SS. A sex?linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex?determination and homomorphic sex chromosomes. Journal of Evolutionary Biology. 2009 Jan 1;22(1):214-24. https://doi.org/10.1111/j.1420-9101.2008.01641.x

Volz SM, Renner SS. Hybridization, polyploidy and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). American Journal of Botany. 2008 Oct;95(10):1297-306. https://doi.org/10.3732/ajb.080018

Baratakke RC, Patil CG. Identification of a RAPD marker linked to sex determination in Momordica dioica Roxb. Indian Journal of Genetics and Plant Breeding. 2009 Aug 25;69(03):254-55.

Kausar N, Yousaf Z, Younas A, Ahmed HS, Rashid M, Arif A, Rehman HA. Karyological analysis of bitter gourd (Momordica charantia L., Cucurbitaceae) from Southeast Asian countries. Plant Genetic Resources. 2015 Aug;13(2):180-82. https://doi.org/10.1017/S147926211400077X

Bharathi LK, Munshi AD, Vinod, Chandrashekaran S, Behera TK, Das AB, et al. Cytotaxonomical analysis of Momordica L. (Cucurbitaceae) species of Indian occurrence. Journal of Genetics. 2011 Apr;90:21-30. https://link.springer.com/article/10.1007/s12041-011-0026-5

Behera TK, John KJ, Bharathi LK, Karuppaiyan R. Momordica. In: Wild Crop Relatives: Genomic and Breeding Resources: Vegetables. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011 Jun 6. pp. 217-46. https://doi.org/10.1007/978-3-642-20450-0_10

Guha A, Sinha RK, Sinha S. Average packing ratio as a parameter for analyzing the karyotypes of dioecious cucurbits. Caryologia. 2004 Jan 1;57(1):117-20. https://doi.org/10.1080/00087114.2004.10589379

Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005 Aug;95(2):118-28. https://doi.org/10.1038/sj.hdy.6800697

Zluvova J, Kubat Z, Hobza R, Janousek B. Adaptive changes of the autosomal part of the genome in a dioecious clade of Silene. Philosophical Transactions of the Royal Society B. 2022;377:20210228. https://doi.org/10.1098/rstb.2021.0228

VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, et al. Origin and domestication of papaya Yh chromosome. Genome Research. 2015 Apr 1;25(4):524-33. doi: 10.1101/gr.183905.114

Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009 Jun;102(6):533-41. https://doi.org/10.1038/hdy.2009.17

Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF. Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity. 2007 Feb;98(2):74-84. https://doi.org/10.1038/sj.hdy.6800898

Razumova OV, Divashuk MG, Alexandrov OS, et al. GISH painting of the Y chromosomes suggests advanced phases of sex chromosome evolution in three dioecious Cannabaceae species (Humulus lupulus, H. japonicus and Cannabis sativa). Protoplasma. 2023;260:249-56. https://doi.org/10.1007/s00709-022-01774-x

Sobel JM, Streisfeld MA. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution. 2015 Feb 1;69(2):447-61. https://doi.org/10.1111/evo.12589

Ngo Ngwe F, Siljak-Yakovlev S. Sex determination in Dioscorea dumetorum: Evidence of heteromorphic sex chromosomes and sex-linked NORs. Plants. 2023 Jan 4;12(2):228. https://doi.org/10.3390/plants12020228

Salzano AM, Sobolev A, Carbone V, Petriccione M, Renzone G, Capitani D, et al. A proteometabolomic study of Actinidia deliciosa fruit development. Journal of Proteomics. 2018 Feb 10;172:11-24. https://doi.org/10.1016/j.jprot.2017.11.004

Grassa CJ, Weiblen GD, Wenger JP, Dabney C, Poplawski SG, Timothy Motley S, et al. A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytologist. 2021 May;230(4):1665-79. https://doi.org/10.1111/nph.17243

Sousa A, Bellot S, Fuchs J, Houben A, Renner SS. Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. The Plant Journal. 2016 Nov;88(3):387-96. https://doi.org/10.1111/tpj.13254

Bhowmick BK, Jha S. Differential heterochromatin distribution, flow cytometric genome size and meiotic behavior of chromosomes in three Cucurbitaceae species. Scientia Horticulturae. 2015 Sep 22;193:322-29. https://doi.org/10.1016/j.scienta.2015.07.006

Bhowmick BK, Jha TB, Jha S. Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chromosome Science. 2012;15:pp. 9-15. https://doi.org/10.11352/scr.15.9

Ghadge AG, Karmakar K, Devani RS, Banerjee J, Mohanasundaram B, Sinha RK, et al. Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis. BMC Plant Biology. 2014 Dec;14:1-5. http://www.biomedcentral.com/1471-2229/14/325

Li W, Chen J, Dong X, Liu M, Wang G, Zhang L. Flower development and sexual dimorphism in Vernicia montana. Horticultural Plant Journal. 2024 Mar 1;10(2):586-600. https://doi.org/10.1016/j.hpj.2023.03.012

Wei Y, Li A, Zhao Y, Li W, Dong Z, Zhang L, et al. Time-course transcriptomic analysis reveals molecular insights into the inflorescence and flower development of Cardiocrinum giganteum. Plants. 2024 Feb 27;13(5):649. https://doi.org/10.3390/plants13050649

Vosolsob? S, Skokan R, Petrášek J. The evolutionary origins of auxin transport: what we know and what we need to know. Journal of Experimental Botany. 2020 Jun 11;71(11):3287-95. https://doi.org/10.1093/jxb/eraa169

Du S, Sang Y, Liu X, Xing S, Li J, Tang H, Sun L. Transcriptome profile analysis from different sex types of Ginkgo biloba L. Frontiers in Plant Science. 2016 Jun 16;7:871. https://doi.org/10.3389/fpls.2016.00871

Chaudhary A, Singh K. Transcriptome analysis of apical meristem enriched bud samples for size dependent flowering commitment in Crocus sativus reveal role of sugar and auxin signalling. Molecular Biology Reports. 2024 Dec;51(1):605. https://link.springer.com/article/10.1007/s11033-024-09574-7

Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015 Nov 6;350(6261):688-91. https://doi.org/10.1126/science.aac8370

Xu M, Li X, Xie W, Lin C, Wang Q, Tao Z. ETHYLENE INSENSITIVE3/EIN3-LIKE1 modulate FLOWERING LOCUS C expression via histone demethylase interaction. Plant Physiology. 2023 Jul;192(3):2290-300. https://doi.org/10.1093/plphys/kiad131

Narayanan MB, Mohan SV, Subramanyam P, Venkatachalam R, Markkandan K. Identification of causal gene-specific SNP markers for the development of gynoecious hybrids in cucumber (Cucumis sativa L.) using the pathologic algorithm. Horticulturae. 2023 Mar 17;9(3):389. https://doi.org/10.3390/horticulturae9030389

Wang Y, Li Y, Zhang W, Yang Y, Ma Y, Li X, et al. BSA-Seq and transcriptomic analysis provide candidate genes associated with inflorescence architecture and kernel orientation by phytohormone homeostasis in maize. International Journal of Molecular Sciences. 2023 Jun 27;24(13):10728. https://doi.org/10.3390/ijms241310728

Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, et al. ABSCISIC ACID INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. Journal of Experimental Botany. 2016 Jan 1;67(1):195-205. https://doi.org/10.1093/jxb/erv459

Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormones control of floral transition in plants. Journal of Experimental Botany. 2024 Mar 8;erae105. https://doi.org/10.1093/jxb/erae105

Qi T, Huang H, Song S, Xie D. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. The Plant Cell. 2015 Jun 1;27(6):1620-33. https://doi.org/10.1105/tpc.15.00116

Li Z, Luo X, Ou Y, Jiao H, Peng L, Fu X, et al. JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Molecular Plant. 2021 May 3;14(5):732-47. https://doi.org/10.1016/j.molp.2021.03.001

Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth–defense balance: Stress regulators that function in maize development. Journal of Integrative Plant Biology. 2024 Mar;66(3):424-42. https://doi.org/10.1111/jipb.13570

Schubert R, Dobritzsch S, Gruber C, Hause G, Athmer B, Schreiber T, et al. Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. The Plant Cell. 2019 May 1;31(5):1043-62. https://doi.org/10.1105/tpc.18.00978

Serrano-Bueno G, de Los Reyes P, Chini A, Ferreras-Garrucho G, de Medina-Hernández VS, Boter M, et al. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. Molecular Plant. 2022 Nov 7;15(11):1710-24.https://doi.org/10.1016/j.molp.2022.09.01

Nisar S, Dar RA, Tahir I. Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiology Reports. 2021 Mar;26:128-36. https://link.springer.com/article/10.1007/s40502-021-00569-1

Published

28-12-2024

Versions

How to Cite

1.
Pattnaik A, Prusty PK, Barik M, Mishra R, Mohanty JN. Sex evolution path involved in flowering plant family Cucurbitaceae: A review. Plant Sci. Today [Internet]. 2024 Dec. 28 [cited 2025 Jan. 7];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3176

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.