This is an outdated version published on 24-09-2024. Read the most recent version.
Forthcoming

DNA barcoding: An effective molecular tool for species identification, molecular authentication and phylogeny studies in plant science research

Authors

DOI:

https://doi.org/10.14719/pst.3183

Keywords:

CBOL, DNA Barcoding, DNA markers, rbcL, matK, ITS, trnH-psbA

Abstract

DNA barcoding is a technique for identifying specimens using brief, standardised DNA segments. In a variety of fields, including phylogeny, ecology, population genetics and biodiversity, DNA barcoding has become a successful method for precisely distinguishing species. The method is straightforward, efficient in both time and money and accurate. The key to successful DNA barcoding is choosing the right DNA marker. Since the idea of a quick approach for species identification was first put up in 2003, the scientific community has been keen to realise the potential of DNA barcodes. Cytochrome c oxidase, I (COI) region of the mitochondrial genome is mostly recognised as a standard barcoding region in animals. Later, rbcL + matK pairing, with a 70 % discriminating efficiency, was suggested by the Plant Working Group (PWG) of the Consortium for the Barcoding of Life (CBOL) as the standard barcode in plants. Three conditions must be met for a gene region to be an efficient DNA barcode: it must have sufficient species-level genetic divergence and variability, it must have conserved flanking regions for the widest taxonomic use and for generating universal PCR primers and it should be long enough to facilitate current capability for sequencing and extracting DNA. Different combinations of plastid coding, non-coding and nuclear markers are utilised as supplemental markers to boost the degree of plant species differentiation. The reliability of different barcodes in distinguishing species varies among different groups of plants. As DNA barcoding approaches its twentieth anniversary, technologies are still being developed that make use of this resource, which is constantly expanding in a variety of biological disciplines. Plant DNA barcoding, which became a scientific advance during the last ten years, is frequently employed as a taxonomical aid in identifying species. It is a way of choosing genetic loci that identifies and distinguishes an organism's membership from specific species, variations or even intervarieties. It varies from molecular phylogeny, which identifies an unknown sample from an existing classification rather than identifying patterns of association.

Downloads

Download data is not yet available.

References

Deka PC. Plant DNA barcoding. In: Research Anthology on Ecosystem Conservation and Preserving Biodiversity; 2022.pp. 493-515). IGI Global. https://doi.org/10.4018/978-1-6684-5678-1.ch026

Kress WJ, Erickson DL. DNA barcodes: genes, genomics and bioinformatics. Proceedings of the National Academy of Sciences. 2008 Feb 26;105(8):2761-62. https://doi.org/10.1073/pnas.0800476105

Kress WJ, Gostel MR. Plant DNA barcodes, community ecology and species interactions. Diversity. 2022 Jun 6;14(6):453. https://doi.org/10.3390/d14060453

Cahyaningsih R, Compton LJ, Rahayu S, Magos Brehm J, Maxted N. DNA barcoding medicinal plant species from Indonesia. Plants. 2022;11:1375. https://doi.org/10.3390/plants11101375

Bandyopadhyaya SH, Ramakrishnan M, Kulkarni SH, Rajanna L. DNA barcoding and its applications–A critical review. Cmrims J Res and Dev. 2013;1(1):77-81.

Hebert PD, Ratnasingham S, De Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2003 Aug 7;270(suppl_1):S96-S99. https://doi.org/10.1098/rsbl.2003.0025

Vijayan K, Tsou CH. DNA barcoding in plants: taxonomy in a new perspective. Current Science. 2010 Dec 10;1530-41.

Feliner GN, Rosselló JA. Concerted evolution of multigene families and homoeologous recombination. Plant Genome Diversity Volume 1: Plant Genomes, their Residents and their Evolutionary Dynamics. 2012 Mar 5;171-93. https://doi.org/10.1007/978-3-7091-1130-7_12

Ahmed S, Ibrahim M, Nantasenamat C, Nisar MF, Malik AA, Waheed R, et al. Pragmatic applications and universality of DNA barcoding for substantial organisms at species level: a review to explore a way forward. BioMed Research International. 2022 Jan 11;2022. https://doi.org/10.1155/2022/1846485

Puillandre N, Koua D, Favreau P, Olivera BM, Stöcklin R. Molecular phylogeny, classification and evolution of conopeptides. Journal of Molecular Evolution. 2012 Jun;74:297-309. https://doi.org/10.1007/s00239-012-9507-2

Meier R, Shiyang K, Vaidya G, Ng PK. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology. 2006 Oct 1;55(5):715-28. https://doi.org/10.1080/10635150600969864

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018 Jun;35(6):1547. https://doi.org/10.1093/molbev/msy096

Cowan RS, Fay MF. Challenges in the DNA barcoding of plant material. Plant DNA Fingerprinting and Barcoding: Methods and Protocols. 2012;23-33. https://doi.org/10.1007/978-1-61779-609-8_3

Kembel S. An introduction to the picante package. R Proj. 2010 Apr:1-6.

Harrell FE, Dupont C. Hmisc: harrell miscellaneous. R Package Version. 2020;4(0).

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 1980 Jun;16:111-20. https://doi.org/10.1007/BF01731581

Little DP, Stevenson DW. A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms. Cladistics. 2007 Feb;23(1):1-21. https://doi.org/10.1111/j.1096-0031.2006.00126.x

Hebert PD, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology. 2005 Oct 1;54(5):852-59. https://doi.org/10.1080/10635150500354886

Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PloS One. 2011 May 26;6(5):e19254. https://doi.org/10.1371/journal.pone.0019254

Kane NC, Cronk Q. Botany without borders: barcoding in focus. Molecular Ecology. 2008 Dec;17(24):5175-76. https://doi.org/10.1111/j.1365-294X.2008.03972.x

Dong W, Liu J, Yu J, Wang L, Zhou S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PloS One. 2012;7(4):e35071. https://doi.org/10.1371/journal.pone.0035071

Rajphriyadharshini R, Weerasena OV. DNA barcoding of medicinal plant: a systemic review. Int J Pharm Sci Invent. 2020;9(6):06-16.

Jian C, Deyi Q, Qiaoyun Y, Jia H, Dexing L, Xiaoya W, Leiqing Z. A successful case of DNA barcoding used in an international trade dispute. DNA barcodes. 2014;2(1):21-28. https://doi.org/10.2478/dna-2014-0004

CBOL plant working group. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America. 2009 Aug 4;12794-97.

de Vere N, Rich TC, Trinder SA, Long C. DNA barcoding for plants. Plant Genotyping: Methods and Protocols. 2015;101-18. https://doi.org/10.1007/978-1-4939-1966-6_8

Mir RA, Bhat KA, Rashid G, Ebinezer LB, Masi A, Rakwal R, et al. DNA barcoding: a way forward to obtain deep insights about the realistic diversity of living organisms. The Nucleus. 2021 Aug;64:157-65. https://doi.org/10.1007/s13237-020-00330-3

Ahmed SS. DNA barcoding in plants and animals: a critical review. 2022. https://doi.org/10.20944/preprints202201.0310.v1

Wang M, Kapralov MV, Anisimova M. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco. BMC Evolutionary Biology. 2011 Dec;11:1-2. https://doi.org/10.1186/1471-2148-11-266

Windelspecht M. Genetics 101. 1st ed. Santa Barbara: ABC-CLIO; 2007. https://doi.org/10.5040/9798400656194

Hollingsworth PM, Li DZ, van der Bank M, Twyford AD. Telling plant species apart with DNA: from barcodes to genomes. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016 Sep 5;371(1702):20150338. https://doi.org/10.1098/rstb.2015.0338

Gielly L, Taberlet P. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Molecular Biology and Evolution. 1994 Sep 1;11(5):769-77.

Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PloS One. 2008 Jul 30;3(7):e2802. https://doi.org/10.1371/journal.pone.0002802

Reddy MM, du Plessis J, Anderson RJ, Roodt-Wilding R, Bolton JJ. A taxonomically informed DNA reference library to facilitate future biodiversity assessments and monitoring: a case study using seaweeds along a tropical-temperate transition zone in South Africa. BioRxiv. 2023;2023-09. https://doi.org/10.1101/2023.09.14.557690

Hilu KW, Liang G. The matK gene: sequence variation and application in plant systematics. American Journal of Botany. 1997 Jun;84(6):830-39. https://doi.org/10.2307/2445819

Winker K. Sibling species were first recognized by William Derham (1718). The Auk. 2005 Apr 1;122(2):706-07. https://doi.org/10.1093/auk/122.2.706

Hollingsworth ML, Andra Clark AL, Forrest LL, Richardson J, Pennington RT, Long DG, et al. Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources. 2009 Mar;9(2):439-57. https://doi.org/10.1111/j.1755-0998.2008.02439.x

Lee YM, Moon BC, Ji Y, Kim WJ, Kim HK. Molecular Authentication of pinelliae tuber from its adulterants by the analysis of DNA barcodes, matK and rbcL genes. The Korea Journal of Herbology. 2013;28(6):53-58. https://doi.org/10.6116/kjh.2013.28.6.53

Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, Windham MD, Pryer KM. rbcL and matK earn two thumbs up as the core DNA barcode for ferns. PloS One. 2011 Oct 20;6(10):e26597. https://doi.org/10.1371/journal.pone.0026597

Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences. 2008 Feb 26;105(8):2923-28. https://doi.org/10.1073/pnas.0709936105

Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007 Jun 6;2(6):e508. https://doi.org/10.1371/journal.pone.0000508

Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany. 2007 Mar;94(3):275-88. https://doi.org/10.3732/ajb.94.3.275

Whitlock BA, Hale AM, Groff PA. Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PloS One. 2010 Jul 13;5(7):e11533. https://doi.org/10.1371/journal.pone.0011533

Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V. Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005 Oct 29;360(1462):1889-95. https://doi.org/10.1098/rstb.2005.1720

Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnology Journal. 2016 Jan;14(1):8-21. https://doi.org/10.1111/pbi.12419

Pervaiz ZH, Turi NA, Khaliq I, Rabbani MA, Malik SA. Methodology: a modified method for high-quality DNA extraction for molecular analysis in cereal plants. Genetics and Molecular Research: GMR. 2011 Jan 1;10(3):1669-73. https://doi.org/10.4238/vol10-3gmr1346

Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One. 2010 Jan 7;5(1):e8613. https://doi.org/10.1371/journal.pone.0008613

Zhao S, Chen X, Song J, Pang X, Chen S. Internal transcribed spacer 2 barcode: a good tool for identifying Acanthopanacis cortex. Frontiers in Plant Science. 2015 Oct 8;6:840. https://doi.org/10.3389/fpls.2015.00840

Fadzil NF, Wagiran A, Mohd Salleh F, Abdullah S, Mohd Izham NH. Authenticity testing and detection of Eurycoma longifolia in commercial herbal products using bar-high resolution melting analysis. Genes. 2018 Aug 12;9(8):408. https://doi.org/10.3390/genes9080408

Wang XC, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang JH, et al. ITS 1: a DNA barcode better than ITS 2 in eukaryotes?. Molecular Ecology Resources. 2015 May;15(3):573-86. https://doi.org/10.1111/1755-0998.12325

China Plant BOL Group, Li DZ, Gao LM, Li HT, Wang H, Ge XJ, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences. 2011 Dec 6;108(49):19641-46. https://doi.org/10.1073/pnas.1104551108

Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, et al. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PloS One. 2010 Oct 27;5(10):e13674. https://doi.org/10.1371/journal.pone.0013674

Parvathy VA, Swetha VP, Sheeja TE, Sasikumar B. Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharmaceutical Biology. 2015 Dec 2;53(12):1774-79. https://doi.org/10.3109/13880209.2015.1005756

Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Medica. 2016 Jul 8:1225-35. https://doi.org/10.1055/s-0042-111208

Park HS, Jayakodi M, Lee SH, Jeon JH, Lee HO, Park JY, et al. Mitochondrial plastid DNA can cause DNA barcoding paradox in plants. Scientific Reports. 2020 Apr 9;10(1):6112. https://doi.org/10.1038/s41598-020-63233-y

Sucher NJ, Hennell JR, Carles MC. DNA fingerprinting, DNA barcoding and next generation sequencing technology in plants. Plant DNA Fingerprinting and Barcoding: Methods and Protocols. 2012;13-22. https://doi.org/10.1007/978-1-61779-609-8_2

de Vere N, Rich TC, Ford CR, Trinder SA, Long C, Moore CW, et al. DNA barcoding the native flowering plants and conifers of Wales. PloS One. 2012 Jun 6;7(6):e37945. https://doi.org/10.1371/journal.pone.0037945

Ratnasingham S, Hebert PD. BOLD: The barcode of life data system (http://www.barcodinglife. org). Molecular Ecology Notes. 2007;7(3):355-64. https://doi.org/10.1111/j.1471-8286.2007.01678.x

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990 Oct 5;215(3):403-10. https://doi.org/10.1016/S0022-2836(05)80360-2

Jamdade R, Mosa KA, El-Keblawy A, Al Shaer K, Al Harthi E, Al Sallani M, et al. DNA barcodes for accurate identification of selected medicinal plants (Caryophyllales): Toward barcoding flowering plants of the United Arab Emirates. Diversity. 2022 Mar 30;14(4):262. https://doi.org/10.3390/d14040262

Weitschek E, Fiscon G, Felici G. Supervised DNA Barcodes species classification: analysis, comparisons and results. BioData Mining. 2014 Dec;7:1-8. https://doi.org/10.1186/1756-0381-7-4

Jin WT, Schuiteman A, Chase MW, Li JW, Chung SW, Hsu TC, Jin XH. Phylogenetics of subtribe Orchidinae sl (Orchidaceae; Orchidoideae) based on seven markers (plastid matK, psaB, rbcL, trnL-F, trnH-psba and nuclear nrITS, Xdh): implications for generic delimitation. BMC Plant Biology. 2017 Dec;17(1):1-4. https://doi.org/10.1186/s12870-017-1160-x

Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009 Jun 1;25(11):1451-52. https://doi.org/10.1093/bioinformatics/btp187

Lou SK, Wong KL, Li M, But PP, Tsui SK, Shaw PC. An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics. 2010 Dec;11(1):1-8. https://doi.org/10.1186/1471-2164-11-402

Keele J, Carmon J, Pucherelli SF, Hosler D. Identification of unknown organisms by DNA barcoding: A molecular method for species classification. [US Department of the Interior, Bureau of Reclamation], Research and Development Office; 2014.

Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank Nucleic Acids Res. 2012;40:D48-53. https://doi.org/10.1093/nar/gkr1202

Saddhe AA, Kumar K. DNA barcoding of plants: selection of core markers for taxonomic groups. Plant Science Today. 2018;5(1):9-13. https://doi.org/10.14719/pst.2018.5.1.356

Dick CW, Webb CO. Plant DNA barcodes, taxonomic management and species discovery in tropical forests. DNA Barcodes: Methods and Protocols. 2012;379-93. https://doi.org/10.1007/978-1-61779-591-6_18

Kress WJ. Plant DNA barcodes: Applications today and in the future. Journal of Systematics and Evolution. 2017 Jul;55(4):291-307. https://doi.org/10.1111/jse.12254

Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences. 2015 Feb 17;112(7):2076-81. https://doi.org/10.1073/pnas.1424997112

Tsitrone A, Kirkpatrick M, Levin DA. A model for chloroplast capture. Evolution. 2003 Aug 1;57(8):1776-82. https://doi.org/10.1111/j.0014-3820.2003.tb00585.x

Meyers LA, Levin DA. On the abundance of polyploids in flowering plants. Evolution. 2006 Jun 1;60(6):1198-206. https://doi.org/10.1111/j.0014-3820.2006.tb01198.x

Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS. Autopolyploidy in angiosperms: have we grossly underestimated the number of species?. Taxon. 2007 Feb;56(1):13-30.

Elliott TL, Jonathan Davies T. Challenges to barcoding an entire flora. Molecular Ecology Resources. 2014 Sep;14(5):883-91. https://doi.org/10.1111/1755-0998.12277

Collins RA, Cruickshank RH. The seven deadly sins of DNA barcoding. Molecular Ecology Resources. 2013 Nov;13(6):969-75. https://doi.org/10.1111/1755-0998.12046

Wiens JJ, Morrill MC. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology. 2011 Oct 1;60(5):719-31. https://doi.org/10.1093/sysbio/syr025

Forsdyke DR. Success of alignment-free oligonucleotide (k-mer) analysis confirms relative importance of genomes not genes in speciation and phylogeny. Biological Journal of the Linnean Society. 2019 Sep 17;128(2):239-50. https://doi.org/10.1093/biolinnean/blz096

De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M. A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Research International. 2011 Apr 1;44(3):693-702. https://doi.org/10.1016/j.foodres.2010.12.032

Kress WJ, Erickson DL. DNA barcodes: methods and protocols. Humana Press; 2012. https://doi.org/10.1007/978-1-61779-591-6

Li H, Xiao W, Tong T, Li Y, Zhang M, Lin X, et al. The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Scientific Reports. 2021 Jan 14;11(1):1424. https://doi.org/10.1038/s41598-021-81087-w

Gogoi B, Wann SB, Saikia SP. DNA barcodes for delineating Clerodendrum species of North East India. Scientific RepoRtS. 2020 Aug 10;10(1):13490. https://doi.org/10.1038/s41598-020-70405-3

Abdelsalam NR, Hasan ME, Javed T, Rabie SM, El-Wakeel HE, Zaitoun AF, et al. Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding. Molecular Biology Reports. 2022 Jun;49(6):5645-57. https://doi.org/10.1007/s11033-022-07574-z

Hartvig I, Czako M, Kjær ED, Nielsen LR, Theilade I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS One. 2015 Sep 16;10(9):e0138231. https://doi.org/10.1371/journal.pone.0138231

Baker TR, Pennington RT, Dexter KG, Fine PV, Fortune-Hopkins H, Honorio EN, et al. Maximising synergy among tropical plant systematists, ecologists and evolutionary biologists. Trends in Ecology and Evolution. 2017 Apr 1;32(4):258-67. https://doi.org/10.1016/j.tree.2017.01.007

Webb CO, Donoghue MJ. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes. 2005 Mar;5(1):181-83. https://doi.org/10.1111/j.1471-8286.2004.00829.x

Nicolè S, Negrisolo E, Eccher G, Mantovani R, Patarnello T, Erickson DL, et al. DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technology and Biotechnology. 2012 Dec 27;50(4):387-98.

Dove CJ, Rotzel NC, Heacker M, Weigt LA. Using DNA barcodes to identify bird species involved in birdstrikes. The Journal of Wildlife Management. 2008 Jul;72(5):1231-36. https://doi.org/10.2193/2007-272

Krishna Krishnamurthy P, Francis RA. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation. 2012 Jul;21:1901-19. https://doi.org/10.1007/s10531-012-0306-2

Scheffer SJ, Lewis ML, Joshi RC. DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Annals of the Entomological Society of America. 2006 Mar 1;99(2):204-10. https://doi.org/10.1603/0013-8746(2006)099[0204:DBATIL]2.0.CO;2

Hoang MTV, Irinyi L, Chen SC, Sorrell TC. ISHAM barcoding of medical fungi working group, Meyer W. Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Frontiers in Microbiology. 2019;10:1647. https://doi.org/10.3389/fmicb.2019.01647

Galimberti A, Labra M, Sandionigi A, Bruno A, Mezzasalma V, De Mattia F. DNA barcoding for minor crops and food traceability. Advances in Agriculture. 2014 Jun 23;2014. https://doi.org/10.1155/2014/831875

Thongkhao K, Tungphatthong C, Phadungcharoen T, Sukrong S. The use of plant DNA barcoding coupled with HRM analysis to differentiate edible vegetables from poisonous plants for food safety. Food Control. 2020 Mar 1;109:106896. https://doi.org/10.1016/j.foodcont.2019.106896

Parveen I, Techen N, Khan IA. Identification of species in the aromatic spice family Apiaceae using DNA mini-barcodes. Planta Medica. 2019 Jan;85(02):139-44. https://doi.org/10.1055/a-0664-0947

Nithaniyal S, Majumder S, Umapathy S, Parani M. Forensic application of DNA barcoding in the identification of commonly occurring poisonous plants. Journal of Forensic and Legal Medicine. 2021 Feb 1;78:102126. https://doi.org/10.1016/j.jflm.2021.102126

Amane D, Ananthanarayan L. Detection of adulteration in black gram-based food products using DNA barcoding. Food Control. 2019 Oct 1;104:193-200. https://doi.org/10.1016/j.foodcont.2019.04.041

Zhang M, Shi Y, Sun W, Wu L, Xiong C, Zhu Z, et al. An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices. Food Control. 2019 Dec 1;106:106745. https://doi.org/10.1016/j.foodcont.2019.106745

Amritha N, Bhooma V, Parani M. Authentication of the market samples of Ashwagandha by DNA barcoding reveals that powders are significantly more adulterated than roots. Journal of Ethnopharmacology. 2020 Jun 28;256:112725. https://doi.org/10.1016/j.jep.2020.112725

Shanmughanandhan J. An effective detection and quantification method for adulterated natural health products with Actaea racemosa (Black cohosh) as a model (Doctoral dissertation, University of Guelph).

Chiou SJ, Yen JH, Fang CL, Chen HL, Lin TY. Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. Planta Medica. 2007 Oct;73(13):1421-26. https://doi.org/10.1055/s-2007-990227

Creedy TJ, Norman H, Tang CQ, Qing Chin K, Andujar C, Arribas P, et al. A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Molecular Ecology Resources. 2020 Jan;20(1):40-53. https://doi.org/10.1111/1755-0998.13056

Costion C, Ford A, Cross H, Crayn D, Harrington M, Lowe A. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PloS One. 2011 Nov 11;6(11):e26841. https://doi.org/10.1371/journal.pone.0026841

Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends in Ecology and Evolution. 2009;24(2):110-17. https://doi.org/10.1016/j.tree.2008.09.011

Lin Y, Feng T, Dai J, Liu Q, Cai Y, Kuang J, et al. DNA barcoding identification of IUCN Red listed threatened species in the genus Aquilaria (Thymelaeaceae) using machine learning approaches. Phytochemistry Letters. 2023;55:105-11. ISSN 1874-3900 https://doi.org/10.1016/j.phytol.2023.04.007

Sharma AR, Vohra M, Vinay CM, Paul B, Chakrabarty S, Rai PS. Development of DNA markers using next-generation sequencing approach for molecular authentication of Boerhavia diffusa L. and Tinospora cordifolia (Willd.) Miers. 3 Biotech. 2023;13(9):304. https://doi.org/10.1007/s13205-023-03732-7

Fang H, Dai G, Liao B, Zhou P, Liu Y. Application of chloroplast genome in the identification of Phyllanthus urinaria and its common adulterants. Frontiers of Plant Sciences. 2023;13:1099856. https://doi.org/10.3389/fpls.2022.1099856

Patil S, Imran M, Jaquline RSM, Aeri V. Standardization of Euphorbia tithymaloides (L.) Poit. (Root) by conventional and DNA barcoding methods. ACS Omega. 2023;8(32):29324-35. https://doi.org/10.1021/acsomega.3c02543

Kumar P, Singh K, Bhushan A, et al. Botanical, chemical and DNA barcode-based authentication of herbal ayurvedic medicines from the Menispermaceae. Revista Brasileira de Farmacognosa. 2023;33:300-09. https://doi.org/10.1007/s43450-023-00369-8

Liu Miao, Li Xi-Wen, Liao Baosheng, Luo Lu, REN Yue-Ying. Species identification of poisonous medicinal plant using DNA barcoding. Chinese Journal of Natural Medicines. 2019;17:585-90. https://doi.org/10.1016/S1875-5364(19)30060-3

Jin DP, Sim S, Park JW, Choi JE, Yoon J, Lim CE, Kim MH. Identification of the plant family Caryophyllaceae in Korea using DNA barcoding. Plants (Basel). 2023;12(10):2060. https://doi.org/10.3390/plants12102060 PMID: 37653977; PMCID: PMC10222892.

Panalingan AC, Baltazar MD, Alejandro GJD. Genetic polymorphism of registered and popularly cultivated coffee (Coffea spp.) in the Philippines using inter-sample sequence repeats markers. Biodiversitas. 2020;21:4228-33. https://doi.org/10.13057/biodiv/d210938

Dhivya S, Ashutosh S, Gowtham I, et al. Molecular identification and evolutionary relationships between the subspecies of Musa by DNA barcodes. BMC Genomics. 2020;21:659. https://doi.org/10.1186/s12864-020-07036-5

Zhang D, Jiang B. Species identification in complex groups of medicinal plants based on DNA barcoding: a case study on Astragalus spp. (Fabaceae) from southwest China. Conservation Genetic Resources. 2020;12:469-78. https://doi.org/10.1007/s12686-019-01119-6

Ya-Na LV, Chun-Yong YANG, Lin-Chun SHI, Zhong-Lian ZHANG, An-Shun XU, Li-Xia ZHANG, et al. Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes, Chinese. Journal of Natural Medicines. 2020;18:594-605. https://doi.org/10.1016/S1875-5364(20)30071-6

Sherif NA, Senthil Kumar T, Rao MV. DNA barcoding and genetic fidelity assessment of micropropagated Aenhenrya rotundifolia (Blatt.) C.S. Kumar and F.N. Rasm.: a critically endangered jewel orchid. Physiology and Molecular Biology of Plants. 2020;26(12):2391-405. https://doi.org/10.1007/s12298-020-00917-9

Wang X, Xue J, Zhang Y, Xie H, Wang Y, Weng W, et al. DNA barcodes for the identification of Stephania (Menispermaceae) species. Molecular Biology Reporter. 2020;47(3):2197-203. https://doi.org/10.1007/s11033-020-05325-6

Yu X, Tan W, Gao H, Miao L, Tian X. Development of a specific mini-barcode from plastome and its application for qualitative and quantitiative identification of processed herbal products using DNA metabarcoding technique. A case study on Senna. Frontiers of Pharmacology. 2020;10. https://doi.org/10.3389/fphar.2020.585687

Kannangara S, Karunarathne S, Ranaweera L, Ananda K, Ranathunga D, Jayarathne H, et al. Assessment of the applicability of wood anatomy and DNA barcoding to detect the timber adulterations in Sri Lanka. Scientific Reports. 2020;10(1):4352. https://doi.org/10.1038/s41598-020-61415-2

Kumar A, Rodrigues V, Baskaran K, Shukla AK, Sundaresan V. DNA barcode based species-specific marker for Ocimum tenuiflorum and its applicability in quantification of adulteration in herbal formulations using Qpcr. Journal of Herbal Medicine. 2020;23:00376. ISSN 2210-8033 https://doi.org/10.1016/j.hermed.2020.100376

Kurian A, Dev SA, Sreekumar VB, Muralidharan EM. The low copy nuclear region, RPB2 as a novel DNA barcode region for species identification in the rattan genus Calamus (Arecaceae). Physiology and Molecular Biology of Plants. 2020;26(9):1875-87. https://doi.org/10.1007/s12298-020-00864-5

Jiao Lichao, He Tuo, Dormontt Eleanor E, Zhang Yonggang, Lowe Andrew J, Yin Yafang. Applicability of chloroplast DNA barcodes for wood identification between Santalum album and its adulterants. Holzforschung. 2018;10.1515/hf-2018-0047.

Li QJ, Wang X, Wang JR, Su N, Zhang L, Ma YP, et al. Efficient identification of Pulsatilla (Ranunculaceae) using DNA barcodes and micro-morphological characters. Frontiers of Plant Sciences. 2019;9:10:1196 https://doi.org/10.3389/fpls.2019.01196

Doh EJ, Kim JH, Lee G. Identification and monitoring of Amomi fructus and its adulterants based on DNA barcoding analysis and designed DNA markers. Molecules. 2019;19:24(22):4193. https://doi.org/10.3390/molecules24224193

Abid A, Mohanan P, Kaliraj L, Park JK, Ahn JC, Deok Chun Yang CD. Development of species-specific chloroplast markers for the authentication of Gynostemma pentaphyllum and their distribution in the Korean peninsula. Fitoterapia. 2019;138:104295. ISSN 0367-326X, https://doi.org/10.1016/j.fitote.2019.104295

Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One. 2019;20:14(12):e0226865. https://doi.org/10.1371/journal.pone.0226865

Frigerio J, Gorini T, Galimnerti A, Bruni I, Tommasi N, Mezzasalma V, Labra M. DNA barcoding to trace medicinal and aromatic plants from the field to the food supplement. Journal of Applied Botany and Food Quality. 2019;92:33-38. https://doi.org/10.5073/JABFQ.2019.092.005

Sheidai Masoud, Tabaripour Raheleh, Talebi Seyed, Noormohammadi Zahra, Koohdar Fahimeh. Adulteration in medicinally important plant species of Ziziphora in Iran market: DNA barcoding approach. Industrial Crops and Products. 2019;130:627-33. https://doi.org/10.1016/j.indcrop.2019.01.025

Wang H, Shi LL, Zhou J, Zhu GP. DNA barcoding identification of Dendrobium huoshanense and its adulterants. Zhongguo Zhong yao za zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica. 2018;43(20):4055-61. https://doi.org/10.19540/j.cnki.cjcmm.2018.0107 PMID: 30486530

Jiao L, Yu M, Wiedenhoeft AC, et al. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: the critical role of xylarium specimens. Scientific Reports. 2018;8:1945. https://doi.org/10.1038/s41598-018-20381-6

Inglis Peter, Mata Lorena, Silva Marcos, Vieira Roberto, Alves Rosa, Silva Dijalma, Azevedo Vânia. DNA barcoding for the identification of Phyllanthus taxa used medicinally in Brazil. Planta Medica. 2018;84: https://doi.org/10.1055/a-0644-2688

Manzanilla V, Kool A, Nguyen Nhat L, et al. Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evolutionary Biology. 2018;18:44. https://doi.org/10.1186/s12862-018-1160-y

Kumar S, Krishna V, Seethapathy GS, et al. Assessment of adulteration in raw herbal trade of important medicinal plants of India using DNA barcoding. 3 Biotech. 2018;8(3):135. https://doi.org/10.1007/s13205-018-1169-3

Abubakar BM, et al. Assessing product adulteration of Eurycoma longifolia (Tongkat Ali) herbal medicinal product using DNA barcodign and HPLC analysis. Pharmaceutical Biology. 2018;56(1):68-77. https://doi.org/10.1080/13880209.2018.1479869

Reunov A, Reunova G, Atopkin D, Reunova Y, Muzarok T, Zakharov E, Zhuravlev Y. The identification of Araliaceae species by ITS2 genetic barcoding and pollen morphology. Planta Medica. 2018;84(1):42-48. https://doi.org/10.1055/s-0043-114425

Su Y, Ding D, Yao M, et al. Specific DNA mini-barcoding for identification of Gekko gecko and its products. Chinese Medicine. 2020;15:103. https://doi.org/10.1186/s13020-020-00382-2

Osathanunkul M. Bar-HRM for authenticating soursop (Annona muricata) tea. Scientific Reports. 2018;8:12666. https://doi.org/10.1038/s41598-018-31127-9

Yu N, Wei Yl, Zhang X, et al. Barcode ITS2: a useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Scientific Reports. 2017;7:5037. https://doi.org/10.1038/s41598-017-04674-w

Kshirsagar P, Umdale S, Chavan J, et al. Molecular authentication of medicinal plant, Swertia chirayita and its adulterant species. Proceedings of Natural Academy of Sciences India, Section B. Biological Sciences. 2017;87:101-07. https://doi.org/10.1007/s40011-015-0556-3

Shi Y, Zhao M, Yao H, et al. Rapidly discriminate commercial medicinal Pulsatilla chinensis (Bge.) Regel from its adulterants using ITS2 barcoding and specific PCR-RFLP assay. Scientific Reports. 2017;7:40000. https://doi.org/10.1038/srep40000

Zhu RW, Li YC, Zhong DL, et al. Establishment of the most comprehensive ITS2 barcode database to date of the traditional medicinal plant Rhodiola (Crassulaceae). Scientific Reports. 2017;7:10051. https://doi.org/10.1038/s41598-017-09769-y

Cai ZJ, Wu YN, Xu L, Zhao R, Wang B, Kang TG. Identification of Dryopteridis Crassirhizomatis Rhizoma based on psbA-trnH barcode. Zhongguo Zhong Yao Za Zhi. 2016;41(22):4183-87. Chinese. https://doi.org/10.4268/cjcmm20162216

Sundar P, Nithaniyal S, Balaji R, Parani M. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L. Genome. 2016;59: https://doi.org/10.1139/gen-2015-0205

Schmiderer C, Lukas B, Ruzicka J, Novak J. DNA-based identification of Calendula officinalis (Asteraceae). Applied Plant Sciences. 2015;3;3(11):apps.1500069. https://doi.org/10.3732/apps.1500069

Vassou SL, Kusuma G, Parani M. DNA barcoding for species identification from dried and powdered plant parts: A case study with authentication of the raw drug market samples of Sida cordifolia. Gene. 2015;559(1):86-93. ISSN 0378-1119 https://doi.org/10.1016/j.gene.2015.01.025

Bansal S, Thakur S, Mangal M, Mangal AK, Gupta RK. DNA barcoding for specific and sensitive detection of Cuminum cyminum adulteration in Bunium persicum. Phytomedicine. 2018;50:178-83. https://doi.org/10.1016/j.phymed.2018.04.023

Feng SS, Zheng SH, Li YK, Huang LF. Identification of radix et rhizoma clematidis and its adulterants using DNA barcoding. Yao xue xue bao = Acta Pharmaceutica Sinica. 2014;49(2):260-66. PMID: 24761620.

Swetha VP, et al. DNA barcoding for discriminating the economically important Cinnamomum verum from its adulterants. Food Biotechnology. 2014;28(3):183-94. https://doi.org/10.1080/08905436.2014.931239

Zheng SH, Li YK, Ren WG, Huang LF. Molecular identification in genus of Lilium based on DNA barcoding. Yao Xue Xue Bao. 2014;49(12):1730-38. Chinese. PMID: 25920205.

Yu YD, Shi LC, Ma XC, et al. Identification of atractylodis macrocephalae rhizoma and atractylodis rhizoma from their adulterants using DNA barcoding. Zhongguo Zhong yao za zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica. 2014;39(12):2194-98. PMID: 25244743.

14Ashfaq Muhammad, Asif Muhammad, Anjum Zahid, Zafar Yusuf. Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae). Molecular Ecology Resources. 2013;13. https://doi.org/10.1111/1755-0998.12089

14Eurlings MC, Lens F, Pakusza C, Peelen T, Wieringa JJ, Gravendeel B. Forensic identification of Indian snakeroot (Rauvolfia serpentina Benth. ex Kurz) using DNA barcoding. Journal of Forensic Science. 2013;58(3):822-30. doi: 10.1111/1556-4029.12072. Epub 2013 Mar 4. PMID: 23458029. https://doi.org/10.1111/1556-4029.12072

Wong KL, But PH, Shaw PC. Evaluation of seven DNA barcodes for differentiating closely related medicinal Gentiana species and their adulterants. Chinese Medicine. 2013;8:16 . https://doi.org/10.1186/1749-8546-8-16

Selvaraj Dhivya, et al. DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from its adulterants. Genomics, Proteomics and Bioinformatics. 2012;10(6):364-67. https://doi.org/10.1016/j.gpb.2012.03.002

Sui XueYi, Sui XueYi, et al. Molecular authentication of the ethnomedicinal plant Sabia parviflora and its adulterants by DNA barcoding technique. Planta Medicine. 2011:77(5):492-96. https://doi.org/10.1055/s-0030-1250468

Chao J, Chen M, Chen Hong, Lin M, Chang W, Chen Keping, Lee Meng-Yang. Rapid molecular authentication of the medicinal plant Taraxacum mongolium from its adulterants by ribosomal DNA internal transcribed spacer (ITS)- primed polymerase chain reaction. Planta Medica. 2010;76. https://doi.org/10.1055/s-0030-1264309

Li Y, et al. Authentication of Taxillus chinensis using DNA barcoding technique. Journal of Medicinal Plants Research. 2010;4(24):2706-09. https://doi.org/10.5897/JMPR09.677

Ma, Xin-Ye, et al. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biological and Pharmaceutical Bulletin. 2010;33(11):1919-24. https://doi.org/10.1248/bpb.33.1919

Yao Hui, Song Jing-Yuan, Ma Xin-Ye, Liu Chang, Li Ying, Xu Hong-Xi,et al. Identification of Dendrobium species by a candidate DNA barcode sequence: The chloroplast psbA-trnH intergenic region. Planta Medica. 2009;75:667-69. https://doi.org/10.1055/s-0029-1185385

Pang XH, Chen SL. Using DNA barcodes to identify Rosaceae. Planta Medica. 2009;75:12. https://doi.org/10.1055/s-2009-1216450

Xue Heng-Gang, Zhou Song-Dong, He Xing-Jin, Yu Yan. Molecular authentication of the traditional Chinese medicinal plant Euphorbia pekinensis. Planta Medica. 2007;73:91-93. https://doi.org/10.1055/s-2006-951769

Xia Q, Zhao KJ, Huang ZG, Zhang P, Dong TX, Li SP, Tsim WK. Molecular genetic and chemical assessment of Rhizoma curcumae in China. Journal of Agricultural and Food Chemistry. 2005;53(15):6019-26. https://doi.org/10.1021/jf0508495

Travadi, Shah T, Pandit A, Sharma R, Joshi S, Joshi C, Madhvi. Detection of Carica papaya adulteration in Piper nigrum using chloroplast DNA marker-based PCR assays. Food Analytical Methods. 2022;16. https://doi.org/10.1007/s12161-022-02395-z

Guo L, Wang X, Wang R, Li P. Characterization and comparative analysis of chloroplast genomes of medicinal herb Scrophularia ningpoensis and its common adulterants (Scrophulariaceae). International Journal of Molecular Sciences. 2023;24:10034. https://doi.org/10.3390/ijms241210034

Howard C, Hill E, Kreuzer M, Mali P, Masiero E, Slater A, Sgamma T. DNA authentication of St John’s Wort (Hypericum perforatum L.) commercial products targeting the ITS region. Genes. 2019;10(4):286. https://doi.org/10.3390/genes10040286

16Sánchez M, González-Burgos E, Divakar PK, Gómez-Serranillos MP. DNA-based authentication and metabolomics analysis of medicinal plants samples by DNA barcoding and ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC-MS). Plants. 2020;9(11):1601. https://doi.org/10.3390/plants9111601

Thakur VV, Tiwari S, Tripathi N, et al. Molecular identification of medicinal plants with amplicon length polymorphism using universal DNA barcodes of the atpF–atpH, trnL and trnH–psbA regions. 3Biotech. 2019;9:188. https://doi.org/10.1007/s13205-019-1724-6

Mosa K, Sameh S, Keblawy El, Ali A, Hassan M, Tamim H, et al. Using DNA barcoding to detect adulteration in different herbal plant- based products in the united Arab emirates: Proof of concept and validation. Recent Patents on Food, Nutrition and Agriculture.2018;10. https://doi.org/10.2174/2212798410666180409101714

Moon BC, Kim WJ, Ji Y, Lee YM, Kang YM, Choi G. Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae tuber and common adulterants via universal DNA barcode sequences. Genetics and Molecular Biology Research. 2016;19;15(1). https://doi.org/10.4238/gmr.15017064 PMID: 26909979

Han J, Pang X, Liao B, et al. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Scientific Reports. 2016;6:18723. https://doi.org/10.1038/srep18723

Huang WJ, Li FF, Liu YJ, Long CL. Identification of Crocus sativus and its adulterants from Chinese markets by using DNA barcoding technique. Iranian Journal of Biotechnology. 2015;13(1):36-42. https://doi.org/10.15171/ijb.1034 PMID: 28959279; PMCID: PMC5434985.

Guo H, Wang W, Yang N, et al. DNA barcoding provides distinction between Radix Astragali and its adulterants. Science China Life Sciences. 2010;53:992-99. https://doi.org/10.1007/s11427-010-4044-y

Published

24-09-2024

Versions

How to Cite

1.
Nair VD, Aseema P, Saini KC. DNA barcoding: An effective molecular tool for species identification, molecular authentication and phylogeny studies in plant science research. Plant Sci. Today [Internet]. 2024 Sep. 24 [cited 2025 Jan. 7];. Available from: https://horizonepublishing.com/journals/index.php/PST/article/view/3183

Issue

Section

Review Articles

Similar Articles

You may also start an advanced similarity search for this article.