Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Vol. 11 No. 2 (2024)

Chemical components and antioxidant properties of acetone extracts of four different species of Zingiberaceae

DOI
https://doi.org/10.14719/pst.3272
Submitted
10 January 2024
Published
27-03-2024 — Updated on 01-04-2024
Versions

Abstract

In this report, the chemical components and antioxidant properties of the acetone extracts obtained from 4 Zingiberaceae species, including Curcuma gracillima Gagnep., Curcuma pierreana Gagnep., Globba marantina L. and Amomum biflorum Jack were investigated for the first time. A total of 142 chemical compounds were determined in 4 studied extracts using GC/MS techniques. Furthermore, the extract obtained from C. gracillima showed the strongest antioxidant effect with an IC50 value of 1.76 mg/mL, followed by G. marantina (IC50 = 2.45 mg/mL), C. pierreana (IC50 = 2.97 mg/mL) and A. biflorum (IC50 = 6.32 mg/mL).

References

  1. Kress WJ, Prince LM, Williams KJ. The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. Am J Bot. 2002;89(10):1682-96. https://doi.org/10.3732/ajb.89.10.1682
  2. Van HT, Dam SM, Phan UTX, Nguyen TNA, Nguyen TBT, Tran TL et al. Chemical diversity of essential oils from aerial parts of eight species of Zingiberaceae family from Vietnam. Acta Univ Agric Silvic Mendelianae Brun. 2022;70(4-5):273-81. https://doi.org/10.11118/actaun.2022.020
  3. Piyaporn S, Surapon S. Diversity, traditional uses and conservation status of Zingiberaceae in Udorn Thani Province, Thailand. Biodiversitas J Biol Divers. 2021;22(8):3083-97. https://doi.org/10.13057/biodiv/d220801
  4. Trimanto T, Dwiyanti D, Indriyani S. Morfologi, anatomi dan uji histokimia rimpang Curcuma aeruginosa Roxb., Curcuma longa L. DAN Curcuma heyneana Valeton dan Zijp. Ber Biol. 2018;17(2):2337-51. https://doi.org/10.14203/beritabiologi.v17i2.3086
  5. Pham HH, Araceae, In: Pham-hoang, H (Ed.). Cây c? Vi?t Nam: An illustrated flora of Vietnam. Youth Publishing House, Ho Chi Minh City. 2000.
  6. Nguyen QB. Zingiberaceae, Flora of Vietnam. Publisher of Science and Technology, Ha Noi; 2017.
  7. Ly NS, Hoang TS, Insisiengmay O, Haevermans T, Newman MF. Conamomum vietnamense (Zingiberaceae), a new species from Tay Nguyen, Vietnam. Phytotaxa. 2022;531(2):129-35. https://doi.org/10.11646/phytotaxa.531.2.5
  8. Nguyen HT, Nguyen NA, Veryanov LA, Nguyen DD, Le CT. Curcuma tuanii (Zingiberaceae) a new species of subgenus Ecomata from Northern Vietnam based on morphological and molecular evidence. Acta Bot Brasilica. 2023;37. https://doi.org/10.1590/1677-941x-abb-2023-0028
  9. Nguyen DD, Le TA, Hoang QH, Le QT, Nguyen E. Two new taxa of Curcuma sect. Ecomata (Zingiberaceae: Zingibereae), from coastal Central Vietnam. Biodiversitas J Biol Divers. 2022;23(5):2512-19. https://doi.org/10.13057/biodiv/d230531
  10. Luu HT, Tran HD, Nguyen QD, Nguyen TQT, Tran G. Conamomum odorum, a new species of Zingiberaceae from central Vietnam. Academia Journal of Biology. 2019;41(3):55-59. https://doi.org/10.15625/0866-7160/v41n3.13671
  11. Ly NS, Leong-Škorni?ková J. Amomum cristatissimum (Zingiberaceae: Alpinieae), a new species with echinate fruits from central Vietnam. Nord J Bot. 2018;36(3):njb-01691. https://doi.org/10.1111/njb.01691
  12. Baltzerm C, Nguyen TD, Shore RG. Towards a vision for biodiversity conservation in the forests of the lower Mekong ecoregion complex. WWF Indochina/WWF US, Hanoi and Washington D.C, 2001.
  13. Bang TV, Long V, Duc HM. The mammal fauna of Binh Chau-Phuoc Buu Nature Reserve, Xuyen Moc District, Ba Ria-Vung Tau Province. Proceeding 5th Natl Sci Conf Ecol Biol Resour. Ha Noi; 2013.
  14. Saxena HO, Brahmam M. The Flora of Orissa. Vol-III. Bhubaneswar: Orissa Forest Development Corporation Ltd; 1995.
  15. Anonymous. Reviews on Indian Medicinal Plants. Vol-11. New Delhi: Indian Council of Medical Research; 2013.
  16. Bridson D, Forman L. The Herbarium Handbook-Third Edition. Royal Botanic Gardens. Royal Botanic Gardens, Kew, UK; 1999.
  17. Le HT, Luu TN, Nguyen HMT, Nguyen DHT, Le PTQ, Trinh NN et al. Antibacterial, antioxidant and cytotoxic activities of different fractions of acetone extract from flowers of Dipterocarpus intricatus Dyer (Dipterocarpaceae). Plant Sci Today. 2021;8(2):273-77. https://doi.org/10.14719/pst.2021.8.2.1086
  18. Bhutia S, Uriah T, Mohanty JP, Pal P, Kakoti BB. Physicochemical evaluation, GC-MS and antibacterial activity of essential oil of the fruit peels of Citrus macroptera montr. of Meghalaya North East India. WJPLS. 2019;5(1):108-15.
  19. Sannigrahi S, Mazuder UK, Pal DK, Parida S, Jain S. Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian J Pharmaceutical Res. 2010;9(1):75-82.
  20. Menon AN, Dan M. Chemical composition of essential oils of Globba species from South India. Journal of Essential Oil Research. 2009;21(1):59-60. https://doi.org/10.1080/10412905.2009.9700110
  21. Nayak S, Jena AK, Mittal DK, Joshi D. GC-MS analysis of phytoconstituents of some wild Zingiberaceae plants methanolic rhizome extracts. Res Plant Sci. 2014;2(1):1-5. http://doi.org/10.12691/plant-2-1-1
  22. Van HT, Dam SM, Phan NTX, Nguyen HBN, Le TT, Nguyen TP, Huynh NTA. Chemical diversity of essential oils of rhizomes of six species of Zingiberaceae family. J Arid Agric. 2022;8:8-13. https://doi.org/10.25081/jaa.2022.v8.7430
  23. Van HT, Phan UTX, Doan VD, Le VS. Chemical Constituents of essential oil from rhizomes and aerial parts of Curcuma gracillima. Chem Nat Compd. 2021;57(3):569-71. https://doi.org/10.1007/s10600-021-03419-6
  24. Singtothong C, Gagnon MJ, Legault J. Chemical composition and biological activity of the essential oil of Amomum biflorum. 2013;8(2)265-67. https://doi.org/10.1177/1934578X1300800234
  25. Van HT, Tran MD, Tran TKN, Nguyen TDH, Nguyen NA, Huynh NTA et al. Chemical profiles and antibacterial activity of acetone extract of two Curcuma species from Vietnam. Plant Sci Today. 2023;10(2):83-89. https://doi.org/10.14719/pst.1993
  26. Sheeja ADB, Nair MS. Facile isolation of (E)-labda-8(17),12-diene-15,16-dial from Curcuma amada and its conversion to other biologically active compounds. 2014;53:319-24.
  27. Chimnoi N, Pisutjaroenpong S, Ngiwsara L, Dechtrirut D, Chokchaichamnankit D, Khunnawutmanotham N. Labdane diterpenes from the rhizomes of Hedychium coronarium. Nat Prod Res. 2008;22(14):1249-56. https://doi.org/10.1080/14786410701726434
  28. Peng W, Li P, Ling R, Wang Z, Feng X, Liu J et al. Diversity of volatile compounds in ten varieties of Zingiberaceae. Molecules. 2022;27(2):565. https://doi.org/10.3390/molecules27020565
  29. Sundram T, Serm L, Malek S, Annuar M, Khalid N. (E)-labda-8(17),12-diene-15,16-dial production from Curcuma mangga (Mango ginger) in vitro cultures. Proc 4th Australas Metabolomics Symp Work. Shah Alam, Malaysia; 2012.
  30. Awin T, Mediani A, Maulidiani, Leong SW, Faudzi SMM, Shaari K, Abas F. Phytochemical and bioactivity alterations of Curcuma species harvested at different growth stages by NMR-based metabolomics. J Food Compos Anal. 2019;77:66-76. https://doi.org/10.1016/j.jfca.2019.01.004
  31. Chakrabartty I, Vijayasekhar A, Rangan L. Therapeutic potential of labdane diterpene isolated from Alpinia nigra: Detailed hemato-compatibility and antimicrobial studies. Nat Prod Res. 2021;35(6):1000-04. https://doi.org/10.1080/14786419.2019.1610756
  32. Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, Majid AMSA. The Anticancer, antioxidant and antimicrobial properties of the sesquiterpene ?-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015;20(7):11808-29. https://doi.org/10.3390/molecules200711808
  33. Yoo HJ, Jwa SK. Efficacy of ?-caryophyllene for periodontal disease related factors. Arch Oral Biol. 2019;100:113-18. https://doi.org/10.1016/j.archoralbio.2019.02.015
  34. Yoo HJ, Jwa SK. Inhibitory effects of ?-caryophyllene on Streptococcus mutans biofilm. Arch Oral Biol. 2018;88:42-46. https://doi.org/10.1016/j.archoralbio.2018.01.009
  35. Gushiken LFS, Beserra FB, Hussni MF, Gonzaga MT, Ribeiro VP, Campos JCL et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxid Med Cell Longev. 2022;9004014. https://doi.org/10.1155/2022/9004014
  36. Fattore E, Fanelli R. Palm oil and palmitic acid: A review on cardiovascular effects and carcinogenicity. International Journal of Food Sciences and Nutrition. 2013;64(5):648-59. https://doi.org/10.3109/09637486.2013.768213
  37. Ganesan T, Subban M, Leslee CDB, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefinery. 2022. https://doi.org/10.1007/s13399-022-03576-w
  38. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434-39. https://doi.org/10.1111/j.1747-0285.2012.01418.x
  39. Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2010;17(2):149-51. https://doi.org/10.1016/j.phymed.2009.05.016
  40. Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148(2):79-82. https://doi.org/10.1023/A:1007178924408
  41. Jun NJ, Mosaddik A, Moon JY, Jang KC, Lee DS, Ahn KS, Cho SK. Cytotoxic activity of ?-caryophyllene oxide isolated from Jeju Guava (Psidium cattleianum Sabine) leaf. Nat Prod. 2011;5:242-46.
  42. Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata Suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and sprague Dawley Rats. Inflammation. 2020;43(3):937-50. https://doi.org/10.1007/s10753-020-01179-z
  43. Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In vivo neuropharmacological effects of neophytadiene. Molecules. 2023;28(8):3457. https://doi.org/10.3390/molecules28083457

Downloads

Download data is not yet available.