Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Leaf anatomy and identification of drought-tolerant Coconut (Cocos nucifera L.) varieties in Kerala, India

DOI
https://doi.org/10.14719/pst.3278
Submitted
11 January 2024
Published
14-07-2025 — Updated on 24-07-2025
Versions

Abstract

Coconut (Cocos nucifera L.) is a tropical evergreen palm with high economic value. Drought stress, exacerbated by climate change, poses a significant threat to coconut production, prompting research to develop drought-tolerant varieties.              In this study, eight hybrid combinations of Dwarf × Tall were evaluated for their drought tolerance. Among the varieties, the hybrid Chowghat Orange Dwarf (COD) × Laccadive Ordinary Tall (LCT) exhibited the greatest thickness of both upper and lower epidermal layers, as well as higher palisade and spongy mesophyll tissue thickness. Additionally, this hybrid recorded the largest xylem diameter. Malayan Yellow Dwarf (MYD) × West Coast Tall (WCT) showed the lowest stomatal density, whereas MYD × LCT recorded the highest trichome density. The combined analysis of the different parameters evaluated through PCA and thickness of the palisade mesophyll cells, width of the bundle sheath cells, number of nuts, stomatal length and width, thickness of spongy mesophyll cells and width of the xylem could distinguish the tolerant hybrids from others. Cluster analysis grouped the hybrids in to four groups based on the drought tolerant nature. The identified drought-tolerant hybrids could undergo screening for additional crucial drought-resistant parameters, contributing to future research aimed at enhancing the drought resistance of hybrids.

References

  1. 1. Burkill IH. A Dictionary of the Economic Products of the Malay Peninsula. Kuala Lumpur: Ministry of Agriculture and Co-operatives. 1966.
  2. 2. Hebbar KB, Balasimha D, Thomas GV. Plantation crops response to climate change: coconut perspective. In: Climate-resilient horticulture: adaptation and mitigation strategies. 2013: 177-87. https://doi.org/10.1007/978-81-322-0974-4_16
  3. 3. Kasturi Bai KV, Rajagopal V, Naresh Kumar S. Chlorophyll fluorescence transients with response to leaf water status in coconut. Indian Journal of Plant Physiology. 2006;11(4):410-4.
  4. 4. Menon KPV, Pandalai KM. The Coconut Palm: A Monograph. Ernakulam, India: Indian Central Coconut Committee; 1958. 384 p.
  5. 5, Engelbrecht BM, Kursar TA, Tyree MT. Drought effects on seedling survival in a tropical moist forest. Trees. 2005; 19:312-21. https://doi.org/10.1007/s00468-004-0393-0
  6. 6. Rajagopal V, Patil KD, Sumathykutty Amma B. Abnormal stomatal opening in coconut palms affected with root (wilt) disease. J Exp Bot. 1986;37: 398-405. https://doi.org/10.1093/jxb/37.9.1398
  7. 7. Prado CHBA, Passos EEM, Moraes JAPV. Photosynthesis and water relations of six tall genotypes of Cocos nucifera in wet and dry seasons. S Afr J Bot. 2001; 67:169-76. https://doi.org/10.1016/S0254-6299(15)30105-9
  8. 8. Azevedo PV, Sousa IF, Silva BB, Silva VP. Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil. Agric Water Manag. 2006;84(3):259-64. https://doi.org/10.1016/j.agwat.2006.01.003
  9. 9. Gomes FP, Prado CHBA. Ecophysiology of coconut palm under water stress. Braz J Plant Physiol. 2007;19:377-91. https://doi.org/10.1590/S1677-04202007000400008
  10. 10. Rajagopal V, Shivasankar S, Mathew J. Impact of dry spells on the ontogeny of coconut fruits and its relation to yield. Plant Res Dev. 1996;3(4):251-5.
  11. 11. Rajagopal V, Kasthuri Bai KV, Voleti SR. Screening of coconut genotypes for drought tolerance. Oleagineux. 1990;45:215-23.
  12. 12. Price AH, Cairns JE, Horton P, Jones HG, Griffiths H. Linking drought?resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot. 2002;53(371):989-1004. https://doi.org/10.1093/jexbot/53.371.989
  13. 13. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu JK. Methods and concepts in quantifying resistance to drought, salt, and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45:523-39. https://doi.org/10.1111/j.1365-313X.2005.02593.x
  14. 14. Wang P, Sun X, Li C, Wei Z, Liang D, Ma F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res. 2013;54:292-302. https://doi.org/10.1111/j.1600-079X.2012.01008.x
  15. 15. Vijayakumar G, Satyabalan K. Yield and nut characteristics of open-pollinated progeny of West Coast Tall and its hybrids with Chowghat Dwarf Orange and Gangabondam. In: Proc. PLACROSYM-V; 1982. p. 172-6.
  16. 16. Anonymous. Survey report on the performance of coconut varieties and hybrids in Kerala State. Kerala Agricultural Department, Kerala Agricultural University, Directorate Coconut Development and Central Plantation Crops Research Institute; 1979. 38 p.
  17. 17. Thampan PK. The Coconut Profile of India. Coconut Development Board, Cochin; 1988. p. 1-30.
  18. 18. Puchtler H, Sweat Waldrop F, Conner HM, Terry MS. Carnoy fixation: practical and theoretical considerations. Histochemie. 1968;16:361-71. https://doi.org/10.1007/BF00306359
  19. 19. Gonzales WL, Negritto MA, Suarez LH, Gianoli E. Water-stressed plants. Acta Oecol. 2008;33:128-32. https://doi.org/10.1016/j.actao.2007.10.001
  20. 20. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers. 4th ed. ICAR, New Delhi; 1985. 359 p.
  21. 21. Belhadj S, Derridj A, Aigouy T, Gers C, Gauquelin T, Mevy JP. Comparative morphology of leaf epidermis in eight populations of Atlas Pistachio (Pistacia atlantica Desf., Anacardiaceae). Microsc Res Tech. 2007;70(10):837-46. https://doi.org/10.1002/jemt.20483
  22. 22. Merkulov L, Ivezí CJ, Krsti? CB, Kovacev L, Pajevi? CS. Structural characteristics of leaf blade of differentially drought-tolerant sugar beet genotypes. In: Proceedings: Drought and Plant Production, Agricultural Research Institute "Serbia"; 1997. p. 487-92.
  23. 23. Ashton PMS, Berlyn GP. A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. Am J Bot. 1994;81:589-97. https://doi.org/10.1002/j.1537-2197.1994.tb15489.x
  24. 24. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K, Marsch-Martinez N, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA. 2007;104(39):15270-5. https://doi.org/10.1073/pnas.0707294104
  25. 25. Sack L, Holbrook NM. Leaf hydraulics. Annu Rev Plant Physiol Plant Mol Biol.. 2006; 57:361-81. https://doi.org/10.1146/annurev.arplant.57.032905.105432
  26. 26. Ramadasan A, Satheesan KV. Certain leaf anatomical characteristics of two coconut cultivars and hybrids. J Plant Crops. 1980;8:55-7.
  27. 27. Naresh Kumar S, Rajagopal V, Karun A. Leaflet anatomical adaptations in coconut cultivars for drought tolerance. Recent Advances in Plantation Crops Research. CPCRI, Kasaragod; 2000. p. 225-9.
  28. 28. Ennajeh M, Vadel AM, Cochard H, Khemira H. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hortic Sci Biotechnol.2010;85(4):289-94. https://doi.org/10.1080/14620316.2010.11512670
  29. 29. Cutter EG. Plant Anatomy: Experiment and Interaction. Part 1. London: Edward Arnold Ltd; 1969. p. 67-87.
  30. 30. Nainanayake AD, Morison JIL. A case study on physiology-based drought screening of coconut with selected accessions. COCOS. 2007;18:1-20.
  31. 31. Jones HG. Breeding for stomatal characters. In: Zeiger E, Farquhar GD, Cowan IR, editors. Stomatal Function. Stanford, CA: Stanford University Press; 1987. p. 431-43.
  32. 32. Mehri N, Fotovat R, Saba J, Jabbari F. Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. J Food Agric Environ. 2009;7:167-70.
  33. 33. Kusvuran S. Relationships between physiological mechanisms of tolerances to drought and salinity in melons [PhD thesis]. Turkey: University of Çukurova; 2010. 356 p.
  34. 34. Khokhar MI, Teixeira da Silva JA. Date palm (Phoenix dactylifera L.) biotechnology: a mini-review. BioTechnologia. 2017;98:153-61. https://doi.org/10.5114/bta.2017.68315
  35. 35. Baloch MJ, Dunwell J, Khan NU, Jatoi WA, Khakhwani AA, Vessar NF, et al. Morpho-physiological characterization of spring wheat genotypes under drought stress. Int J Agric Biol. 2013;15(5):945-50. https://doi.org/10.17957/IJAB/15.5.13
  36. 36. Fu QS, Yang RC, Wang HS, Zhao B, Zhou CL, Ren SX, et al. Leaf morphological and ultrastructural performance of eggplant (Solanum melongena L.) in response to water stress. Photosynthetica. 2013;51:109-14. https://doi.org/10.1007/s11099-013-0005-6
  37. 37. Taulu DB, Rompas TM, Sudasrip H, Davis TA. Coconut (Cocos nucifera) trichomes their significance in classification and insect resistance. Philipp J Coconut Stud. 1980; 5(2): 39-46.
  38. 38. Ewas M, Gao Y, Wang S, et al. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato. Sci Bull. 2016; 61:1413–18. https://doi.org/10.1007/s11434-016-1108-9
  39. 39. Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, et al. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci. 2016; 7:644. https://doi.org/10.3389/fpls.2016.00644
  40. 40. Liu Z, Shi J, Zhang L, Huang J. Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification. J Zhejiang Univ Sci B. 2010;11(1):71–78. https://doi.org/10.1631/jzus.B0920001
  41. 41. Guerfel Mokhtar, Baccouri Olfa, Boujnah Dalenda, Chaïbi Wided, Zarrouk Mokhtar. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic. 2009; 119. 257-263. https://doi.org/10.1016/j.scienta.2008.08.006
  42. 42. Galmés J, Medrano H, Flexas J. Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ Exp Bot. 2007;60(1):105–11. https://doi.org/10.1016/j.envexpbot.2006.08.001
  43. 43. Holmes MG, Keiller DR. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wave bands: a comparison of a range of species. Plant Cell Environ. 2002;25:85–93 https://doi.org/10.1046/j.1365-3040.2002.00779.x

Downloads

Download data is not yet available.