Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Analysis of Glycyrrhiza glabra L. coenopopulations in the Amudarya River basin under global climate change

DOI
https://doi.org/10.14719/pst.3445
Submitted
26 February 2024
Published
17-06-2025 — Updated on 01-07-2025
Versions

Abstract

This paper unveils the outcomes of an extensive research endeavor investigating the impact of climate change on the state of Glycyrrhiza glabra L. (Fabaceae). coenopopulation. The ontogenetic structure of the coenopopulation was studied using the generally accepted method. Coenopopulations were classified based on the systems developed by A. A. Uranova and O. V. Smirnova, L. A. Zhivotovsky utilizing the “delta-omega” concept. Ecological density was determined according to the method outlined by W. Odum. Geobotanical descriptions were carried out using standard 100 m2 plots by established protocols as outlined in Field Geobotany methodologies. The representative ontogenetic spectrum is left-sided and has an absolute maximum in one of the pre-reproductive groups. The coenopopulations deviated from the typical left-sided spectrum culminating in the senile stage. Individual density within the studied coenopopulations ranged from 0.6 to 7.17 individuals/m2. In comparison, ecological density varied from 0.85 to 8.1 individuals/m2. According to the “delta-omega” classification, G. glabra coenopopulations comprised mature (CP 5), transitional (CP 4) and old individuals (CP 1, 2, 3, 6). The decline of G. glabra along the Amu Darya River appears primarily attributable to two factors: intensive changes in water availability, potentially including significant shifts in channel location, and the extensive utilization and economic development of tugai forests for agricultural purposes.

References

  1. 1. Malcolm JR, Liu C, Neilson RO, Hansen A, Hannah L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol. 2006;20(2):538–48. 10.1111/j.1523-1739.2006.00364.x
  2. 2. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science. 2008;322(5899):258–61. https://doi.org: 10.1126/science.1162547
  3. 3. Khabibullaev BSh, Shomurodov KhF, Adilov BA. Impact of long-term climate change on Moluccella bucharica population decline in Uzbekistan. Plant Sci Today. 2022;9(2): 357–63. https://doi.org/10.14719/pst.1464
  4. 4. Shomurodov KhF, Khabibullaev BSh. Investigation of changes in the species composition of the plant community containing relict species of Moluccella bucharica for half a century. Malayan Nat J. 2022;74(1): 19–29.
  5. 5. Sapanov MK. Peculiarities and ecological consequences of climate warming in the Northern Caspian semi-desert. Povolzhskiy J Ecol. 2021;1:64–78. https://doi.org/10.35885/1684-7318-2021-1-64-78
  6. 6. Fenu G, Al-Rammahi HM, Cambria S, Cristaudo AE, Khabibullaev BS, Mohammad MK, et al. Global and Regional IUCN Red List Assessments: 14. Ital Bot. 2022;14: 81–94. https://doi.org/10.3897/italianbotanist.14.97176
  7. 7. Fenu G, Cambria S, Giacò A, Khabibullaev BS, Shomurodov KhF, et al. Global and Regional IUCN Red List Assessments: 16. Ital Bot. 2023;16: 121–33. https://doi.org/10.3897/italianbotanist.16.115947.
  8. 8. Orsenigo S, Cambria S, Khabibullaev BSh, Shomurodov KhF, Tavilla G, Troia A, et al. Global and Regional IUCN Red List Assessments: 13. Ital Bot. 2022;13: 85–94. https://doi.org/10.3897/italianbotanist.13.86714
  9. 9. Xu B, Hugjiltu M, Baoyin T, Zhong Y, Bao Q, Zhou Y, et al. Rapid loss of leguminous species in the semi-arid grasslands of Northern China under climate change and mowing from 1982 to 2011. J Arid Land. 2020;12 (5): 752–65. https://doi.org/10.1007/s40333-020-0022-9
  10. 10. Korolyuk AY, Shomurodov KhF, Khabibullaev BSh, Sadinov JS. Composition and structure of tugai communities in indication of ecological conditions in Lower Amu Darya. Sibirskiy Ekologicheskiy Zhurnal. 2024;1: 131–38. https://doi.org:10.15372/SEJ20240111
  11. 11. Mailun, ZA. Tugai vegetation. In: Vegetation cover of Uzbekistan. Tashkent: Science: 1973; p. 303–75.
  12. 12. Makulbekova GB, Kurochkina LYa, Vukhrer VV, Dimeeva LA. Distribution, structure and mapping. Complex characteristics of pastures in the desert zone of Kazakhstan. Alma-ata: Science, 1990; p. 139–52.
  13. 13. Isambaev AI. Reed thickets in the middle reaches of the Syrdarya River. Proc Inst Bot Acad Sci KazSSR. 1962;18: 23–72.
  14. 14. Rakhimova NK, Shomurodov KhF, Sharipova VK, Saitjanova USh, Sadinov JS. Using biodiversity indices to assess the current state of tugai vegetation of the Amu Darya River, Uzbekistan. Biodiversitas. 2023;24 (1): 467–72. https://doi.org:10.13057/biodiv/d240153
  15. 15. Saribaeva ShU, Shomurodov KhF. Actual State of Coenopopulations of Astragalus cenralis Sheld. under Conditions of Kuldzhuktau Ridge (Kyzylkum Desert). Arid Ecosyst. 2017;7 (4): 265–70. https://doi.org:10.1134/S2079096117040096
  16. 16. Rakhimova T., Rakhimova NK. Ontogenesis and ontogenetic structure of cenotic populations of Eremurus anisopterus (Asphodelaceae) in the Kyzylkum desert (Uzbekistan). Botanica Pacifica. Bot Pac J Plant Sci Conserv. 2022;11 (2): 39–44. https://doi.org:10.17581/bp.2022.11218
  17. 17. Saribaeva ShU., Shomurodov KhF., Abduraimov OA. Ontogenesis and Ontogenetic Structure of Local Populations of the Astragalus holargyreus Bunge (Fabaceae) of the Narrow-Local Endemic of Kyzylkum. Arid Ecosyst. 2021;12 (1): 78–84. https://doi.org:10.1134/S2079096122010103
  18. 18. Rakhimova NK, Rakhimova T, Shomurodov KhF, Sharipova VK. The Status of Coenopopulations of Xylosalsola chiwensis (Popov) Akhani & Roalson and Scorzonera Bungei Krasch. & Lipsch. on the Ustyurt Plateau (Uzbekistan). Arid Ecosyst. 2023;13 (2): 189–95. https://doi.org:10.1134/S2079096123020117
  19. 19. Akhmedov A, Beshko N, Keldiyorov X, Umurzakova Z, Hasanov M, Atayeva S, et al. Ontogenetic structure of populations of Phlomis nubilans (Lamiaceae) in Uzbekistan under drought climate. Ekológia (Bratislava). 2023;42 (4): 349–53. https://doi.org:10.2478/eko-2023-0039
  20. 20. Khabibullaev BSh. Current state of populations of rare species of the genus Moluccella L. (Lamiaceae) in Uzbekistan. [PhD dissertation], Toshkent. 2023;5–18.
  21. 21. Abduraimov ОS, Kovalenko IN, Makhmudov AV, Allamurotov AL, Mavlanov BJ. Ontogenetic structure of coenopopulations of Allium pskemense (Amaryllidaceae) in Uzbekistan. Biosyst Divers. 2022;30(1): 88–94. https://doi:10.15421/012209
  22. 22. Saribaeva ShU, Allamuratov A, Mavlanov B, Mamatkosimov O. Assessment of the State of the Allium praemixtum Vved. coenopopulation (Amaryllidaceae) on the ridges of Uzbekistan. Arid Ecosyst. 2023;13(4):419–24. https://doi.org:10.1134/S2079096123040133
  23. 23. Abduraimov OS, Maxmudov AV, Kovalenko I, Allamurotov AL, Mavlanov BJ, Saribaeva ShU, et al. Floristic diversity and economic importance of wild relatives of cultivated plants in Uzbekistan (Central Asia). Biodiversitas. 2023; 24 (3): 1668–75. doi:10.13057/biodiv/d240340
  24. 24. Abdiniyazova, GZh., Khozhimatov OK. Current state of natural thickets of Glycyrrhiza glabra L. in Karakalpakstan. Bull Karakalpak Branch Acad Sci Repub Uzbekistan. 2013; 3/2 (59): 455–56.
  25. 25. Kuznetsova MA. Tales about medicinal plants (Moscow): Higher School. 1992; 228–9.
  26. 26. Akopov IE. The most important domestic medicinal plants and their use (Tashkent): Medicine;1990.
  27. 27. Tolstikov GA, Baltina LA, Grankina VP, Kondratenko RM, Tolstikova TG. Licorice: biodiversity, chemistry, medicinal uses. Monograph. Novosibirsk: Geo; 2007.
  28. 28. Khojimatov OK, Khamrayeva D, Malsev I, Khujanov A, Kasimov Z, Saitjanova U, et al. Atlas of wild medicinal plants of Uzbekistan. Retrieved February 17, 2021, from https://planta-medica.uz/glycyrrhiza-glabra-l-solodka-golaya-lakrichnyj-koren/
  29. 29. Kendall MG. Rank Correlation Methods. London; 1975.
  30. 30. Aizen E, Aizen V, Melack J, Nakamura T, Ohta T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol. – United Kingdom. 2001; 21(5): 535–56. https://doi.org/10.1002/joc.626
  31. 31. Yao J, Yang Q, Mao W, Zhao Y, Xu X. Precipitation trend-elevation relationship in arid regions of the China. Glob Planet Change. Netherlands. 2016; 143: 1–9. https://doi.org: 10.1016/j.gloplacha.2016.05.007
  32. 32. Ponyatovskaya VM. Lavrenko EM, Korchagina AA. Field geobotany. Moscow-Leningrad: Science; 1964. p. 209–89.
  33. 33. Royal Botanic Gardens. Plants of the World Online. https://powo.science.kew.org
  34. 34. Uranov AA. Age diversity of phytocoenopopulations as the function of time and energetic wave processes. Biol Sci; 1975; 2: 7–34.
  35. 35. Zhivotovsky LA. Ontogenetic states, effective density, and classification of plant populations. Russ J Ecol. 2001; 32: 1–5.
  36. https://doi.org:10.1023/A:1009536128912
  37. 36. Plant coenopopulations (basic concepts and structure. in Russian). Moskow; 1976.
  38. 37. Zaugolnova LB. The structure of populations of seed plants and problems of their monitoring: Biological sciences.[thesis] St. Petersburg; 1994
  39. 38. Uranov AA, Smirnovа OV. Classification and main features of the development of populations of perennial plants. Bull MOIP. 1969; 74 (2): 119−134.
  40. 39. Coenopopulations of plants (Essays on Population Biology). Moskow. 1988.
  41. 40. Odum Yu. Ecology. Moscow: 1986.
  42. 41. Glotov NV. On assessing the parameters of the age structure of plant populations. In: Life of populations in a heterogeneous environment. 1998.
  43. 42. Komin GE. Application of dendrochronological methods in environmental monitoring of forests. Forestry. 1990; 2: 3–11.
  44. 43. Korolyuk AY, Shomurodov HF, Khabibullaev BS, Sadinov ZS. Composition and Structure of Tugai Communities in the Indication of Ecological Conditions in the Lower Amu Darya Contemp Probl Ecol. 2024; 17(1): 106–11. https://doi.org:10.1134/S1995425524010074

Downloads

Download data is not yet available.